Math, asked by areed6427, 11 months ago

ANSWER NOWWWWWWWWWWWW!100POINTS!!Using the linear combination method, what is the solution to the system of linear equations 7 x minus 2 y = negative 20 and 9 x + 4 y = negative 6?

Answers

Answered by omsamarth4315
7

Answer:

7x - 2y = -20 _____(1)

9x + 4y = -6 ________(2)

Multiplying equation (1) by (2)

We get ,

14x - 4y = - 40 _____(3)

Therefore, on adding equations (1) and (3)

23x = -34

X = -34/23

putting the value of x = -34/23 in equation (1) we get,

➡️ 7(-34/23) - 2y = - 20

➡️ - 30.34 = 2y

➡️ y = -15.17

therefore, { x = -34/23 and y = -15.17 } ans.

Step-by-step explanation:

Answered by Anonymous
3

Aɴꜱᴡᴇʀ

 \huge \sf{x =  - 2} \\  \huge \sf{}y = 3

_________________

Gɪᴠᴇɴ

 \sf{7x - 2y =  - 20 -   -  -  -  - 1} \\  \sf{9x + 4y =  -  6 -  -  -  -  -  - 2}

_________________

Tᴏ ꜰɪɴᴅ

The value of 'X' and 'Y'

_________________

Fᴏʀᴍᴜʟᴀ Uꜱᴇᴅ

Substitution method

_________________

Sᴛᴇᴘꜱ

 \sf{we \: can \: change \: 1 \: into \: x =   \frac{ - 20 + 2y}{7} } \\   \sf{substituting \: this in \: 2 \: we \: get \: } \\  \sf{9( \frac{ - 20 + 2y}{7}) + 4y =   - 6 } \\  \sf{  =  ( - 180 )+ 18y + 28y =  - 6 \times 7} \\  \sf{ = 46y = - 42 + 180} \\  \sf{y =  \frac{138}{46} }  \\  \sf{}which \: gives \: y = 3

 \\  \sf{so \: substituting \: the \: value \: of \: y \: in \: the \: equation \: formed  \: by \: us \: first}

 \sf{we \: get \: x =  \frac{ - 20 + 2(3)}{7} } \\  \sf{ x =  \frac{  - 14}{7} } \\  \sf{x =  - 2}

_________________

\huge{\mathfrak{\purple{hope\; it \;helps}}}

Similar questions