Math, asked by lMahek, 11 months ago

Answer of image.....​

Attachments:

Answers

Answered by thatonesuket
0

Answer:

-8\sqrt{5}

Step-by-step explanation:

\frac{\sqrt{5} - 2}{\sqrt{5} +2} - \frac{\sqrt{5}+2}{\sqrt{5}-2 } \\

Rationalizing Denominators of both terms,

and using identity -> a^{2} - b^{2} = (a+b)*(a-b)

\frac{(\sqrt{5}-2)*(\sqrt{5} -2) }{(\sqrt{5}+2)*(\sqrt{5} -2) }  - \frac{(\sqrt{5}+2)*(\sqrt{5} +2) }{(\sqrt{5}-2)*(\sqrt{5}+2)  } \\ \frac{(\sqrt{5}-2) ^{2} }{(\sqrt{5})^{2} - (2)^{2}   } -\frac{(\sqrt{5}+2) ^{2} }{(\sqrt{5})^{2} - (2)^{2}   }\\\frac{(\sqrt{5} -2)^{2} }{5-4} - \frac{(\sqrt{5}+2)^{2} }{5-4} \\\frac{(\sqrt{5}-2)^{2} - (\sqrt{5}+2)^{2}   }{1} \\(\sqrt{5} -2 +\sqrt{5} +2)*(\sqrt{5} -2 - \sqrt{5} -2)\\(2\sqrt{5} )*(-4)\\= -8\sqrt{5}

Hope this helps!!!

Please Mark as Brainliest

Similar questions