Math, asked by devenkale9700, 11 months ago

Answer of the question X^2+5x-66

Answers

Answered by Vamprixussa
6

Given

x^{2} +5x-66=0

Solving, we get,

x^{2} +5x-66=0

\implies x^{2} +11x-6x-66=0

\implies x(x+11)-6(x+11)=0

\implies (x-6)(x+11)=0

Now,

x-6=0\\\implies x = 6

x+11=0\\\implies x = -11

\boxed{\boxed{\bold{Therefore, \ 6 \ and \ -11 \ are \ the \ zeroes \ of \ the \ polynomial}}}}}}

                                                             

Answered by Anonymous
5

Solution :

\bf{\red{\underline{\bf{Given\::}}}}

x² + 5x - 66

\bf{\red{\underline{\bf{Explanation\::}}}}

Using by quadratic formula :

As the given polynomial compared with ax² + bx + c

  • a = 1
  • b = 5
  • c = -66

Now;

\longrightarrow\rm{x=\dfrac{-b\pm\sqrt{b^{2}-4ac } }{2a} }\\\\\\\longrightarrow\rm{x=\dfrac{-5\pm\sqrt{(5)^{2}-4\times 1\times (-66) } }{2\times 1} }\\\\\\\longrightarrow\rm{x=\dfrac{-5\pm\sqrt{25+264} }{2} }\\\\\\\longrightarrow\rm{x=\dfrac{-5\pm\sqrt{289} }{2} }\\\\\\\longrightarrow\rm{x=\dfrac{-5\pm17}{2} }\\\\\\\longrightarrow\rm{x=\dfrac{-5+17}{2} \:\:\:Or\:\:\:x=\dfrac{-5-17}{2} }\\\\\\\longrightarrow\m{x=\cancel{\dfrac{12}{2}} \:\:\:Or\:\:\:x=\cancel{\dfrac{-22}{2} }}\\\\\\

\longrightarrow\rm{\pink{x=6\:\:\Or\:\:x=-11}}

Thus;

The zeroes of the polynomial will be x = 6 and x = -11 .

Similar questions