Chemistry, asked by MizzFlorence, 2 months ago

Answer plch !!!! !!!​

Attachments:

Answers

Answered by rohithkrhoypuc1
2

Answer:

It can be easily done by

Sin (45-30)

Root3/2-1/root2

=(root3-1)/(2-root 2)

And CosA= root of 1+ain square A

Similarly we can get tge values of sin15 degree and cos 15 degrees .

Hope it helps u

Mark it as BRAINLIEAST please i request

Answered by vipinkumar212003
1

Explanation:

\sin(A-B) = \sin A \cos B -  \cos A \sin B  \\\sin(15°) \\ =  \sin(45°-30°)    \\ = \sin 45° \cos 30° -  \cos 45° \sin 30° \\  =  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2}  -  \frac{1}{ \sqrt{2} }  \times  \frac{1}{2}  \\    \boxed{\sin 15°=  \frac{ \sqrt{3} - 1}{2 \sqrt{2} } } \\  \cos(A-B) =  \cos A \cos B+\sin A \sin B \\  \cos 15° \\  = \cos(45°-30°)  \\ =  \cos 45° \cos 30°+\sin 45° \sin 30° \\  =  \frac{1}{ \sqrt{2} }  \times   \frac{ \sqrt{3} }{2}   +  \frac{1}{ \sqrt{2} }  \times  \frac{1}{2}  \\  \boxed{\cos15° =  \frac{ \sqrt{3}  + 1}{2 \sqrt{2} } } \\  \\ \red{\mathfrak{ \large{\underline{{Hope \: It \: Helps \: You}}}}} \\ \blue{\mathfrak{ \large{\underline{{Mark \: Me \: Brainliest}}}}}

Similar questions