Math, asked by kunwarkhehra5, 6 months ago

Answer Please !!!!!!​

Attachments:

Answers

Answered by Ataraxia
12

To Prove :-

\sf ( cosec \theta - sin \theta )(sec \theta - cos \theta )(tan \theta + cot \theta ) = 1

Solution :-

\sf L.H.S = ( cosec \theta - sin \theta )( sec \theta - cos \theta )( tan \theta + cot \theta )

\bullet \bf \ cosec \theta = \dfrac{1}{sin \theta } \\\\\bullet \ sec \theta = \dfrac{1}{cos \theta } \\\\\bullet \ tan \theta = \dfrac{sin \theta }{cos \theta } \\\\\bullet \ cot \theta = \dfrac{cos \theta }{sin \theta }

     = \sf \left( \dfrac{1}{sin \theta } - sin \theta \right) \left( \dfrac{1}{cos \theta }- cos \theta } \right) \left( \dfrac{sin \theta }{cos \theta }+\dfrac{cos \theta }{sin \theta }  \right)  \\\\= \dfrac{1-sin^2 \theta } {sin \theta } \times \dfrac{1-cos^2 \theta }{cos \theta }\times \dfrac{sin^2 \theta + cos^2 \theta }{sin \theta cos \theta }

\bullet \bf \ 1-sin^2 \theta = cos^2 \theta \\\\\bullet \ 1 - cos^2 \theta =sin^2 \theta \\\\\bullet \ sin^2 \theta + cos^2 \theta = 1

      = \sf \dfrac{cos^2 \theta }{sin \theta } \times \dfrac{sin^2 \theta }{cos \theta } \times \dfrac{1}{sin \theta cos \theta }\\\\= \dfrac{cos \theta sin \theta }{sin \theta cos \theta } \\\\= 1 \\\\= R.H.S

Hence proved.

Similar questions