Math, asked by neetuadityak, 9 months ago

answer please if u want test question before exam​

Attachments:

Answers

Answered by King412
38

\huge\underline\mathrm{Given:-}

 \:  \:  \:  \:  x = 2 +  \sqrt{3}

 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }

 \:  \:  \:  = 1 \times  \frac{(2 -  \sqrt{3)} }{(2 +  \sqrt{3})(2 -  \sqrt{3}) }

 \:  \:  = \frac{ (2 -  \sqrt{3})}{ {(2}^{2} -  { (\sqrt{3}) }^{2} ) }

 \:  \:  =  \frac{(2 -  \sqrt{3)} }{4 - 3}

 \:  \:  = 2 -  \sqrt{3}

\huge\underline\mathrm{Solution:-}

 {x}^{2}   =  (2 +  \sqrt{3} )

 \:  \:  =  {(2)}^{2}  +  {( \sqrt{3)} }^{2}  + 2 \times 2 \times  \sqrt{3}

 \:  \:  = 4 + 3 + 4 \sqrt{3}

 \:  \: 7 + 4 \sqrt{3}

________________________________

  \frac{1}{ {x}^{2} }  =  {(2 -  \sqrt{3)} }^{2}

 \:  \:  =  {(2)}^{2}  +  { (\sqrt{3}) }^{2}  - 2 \times 2 \times  \sqrt{3}

 \:  \:  = 4 + 3 - 4 \sqrt{3}

 \:  \:  = 7 - 4 \sqrt{3}

\mathrm{Now,}

 { x }^{2} +  \frac{1}{ {x}^{2} }  = (7 + 4 \sqrt{3} ) + (7 - 4 \sqrt{3} )

 \:  \:  = 7 + 4 \sqrt{3}  + 7 - 4 \sqrt{3}

 \:  \:  = 7 + 7 + 4 \sqrt{3}  - 4 \sqrt{3}

 \:  \:  = 14

hope it's helpful..

Answered by xKALESHIxCHORAx
12

Answer:

\huge\sf\purple{Hope It Helps}

Attachments:
Similar questions