Math, asked by rabadiyanitya225, 2 months ago

answer please in solution please not options ​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given Pair of equations are

\rm :\longmapsto\: {3}^{x + y} = 81 -  -  - (1)

and

\rm :\longmapsto\: {81}^{x  -  y} = 3 -  -  - (2)

Consider equation (1),

\rm :\longmapsto\: {3}^{x + y} = 81

\rm :\longmapsto\: {3}^{x + y} =  {3}^{4}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf{  \because\: {a}^{x} =  {a}^{y}   \:  \implies \: x = y}}

\rm :\longmapsto\:x + y = 4

\rm :\implies\:x = 4 - y -  -  - (3)

Now,

Consider equation (2), we get

\rm :\longmapsto\: {81}^{x - y}  = 3

\rm :\longmapsto\: { {(3}^{4} )}^{x - y}  = 3

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf{  \because\: { {(x}^{m} )}^{n}  =  {x}^{mn}}}

\rm :\longmapsto\: {3}^{4(x - y)}  =  {3}^{1}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf{  \because\: {a}^{x} =  {a}^{y}   \:  \implies \: x = y}}

\rm :\longmapsto\:4(x - y) = 1

\rm :\longmapsto\:4x - 4y = 1

\rm :\longmapsto\:4(4 - y) - 4y = 1 \:  \:  \{using \: equation \: (1) \}

\rm :\longmapsto\:16 - 4y- 4y = 1

\rm :\longmapsto\:16 - 8y = 1

\rm :\longmapsto\: - 8y = 1 - 16

\rm :\longmapsto\: - 8y = - 15

\bf\implies \:y = \dfrac{15}{8} = 1\dfrac{7}{8}

On substituting the value of y in equation (1), we get

\rm :\longmapsto\:x + \dfrac{15}{8} = 4

\rm :\longmapsto\:x  = 4 -  \dfrac{15}{8}

\rm :\longmapsto\:x  =  \dfrac{32 - 15}{8}

\rm :\longmapsto\:x  =  \dfrac{17}{8}

\bf\implies \:x = 2\dfrac{1}{8}

Hence,

  • Option (4) is correct.

Answered by adityathakur33
0

Step-by-step explanation:

you are a student of Allen advance batch

i am also not able to do this i am also in advance batch

Similar questions