Math, asked by krishan427384kk, 9 months ago

answer please please​

Attachments:

Answers

Answered by ankitsaini76216
5

Step-by-step explanation:

I hope this helps you:

welcome

Attachments:
Answered by Sharad001
25

Explanation :-

We have -

 \to  \sf{\tan \theta +  \sin \theta =  p \: } \:  \\ \bf{ and }\:  \\  \to \sf{  \tan \theta -  \sin \theta = q}

taking LHS ( left hand side)

 \implies \sf{ {p}^{2}  -  {q}^{2} } \\  \\  \implies \sf{ (p - q)(p + q)} \\  \\  \implies \: \sf{(\tan \theta +  \sin \theta  -  \tan \theta +  \sin \theta) } \: \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\times  ( \tan \theta +  \sin \theta +  \tan \theta -  \sin \theta) \\  \\  \implies \: 2 \sin \theta  \times 2 \tan \theta \\  \\  \implies \:4 \:  \tan \theta \:  \sin \theta \:

now taking RHS ( right hand side)

 \to \sf{ 4 \sqrt{pq} } \\  \\  \implies \: 4 \sqrt{( \sf{\tan \theta +  \sin \theta )(\sf{\tan \theta  -   \sin \theta )}} \:}  \\  \\  \implies \: 4 \sqrt{ { \tan}^{2} \theta -  { \sin}^{2} \theta  }  \\  \\  \implies \: 4 \sqrt{ \frac{  { \sin}^{2}  \theta}{  { \cos}^{2} \theta } -  { \sin}^{2} \theta  }  \\  \\  \implies \: 4 \sin \theta \sqrt{ \frac{1}{ { \cos}^{2} \theta }  - 1}  \\  \\  \because \boxed{  \frac{1}{ \cos \theta} =  \sec \theta } \\  \\  \implies \: 4 \sin \theta \sqrt{ { \sec}^{2} \theta - 1 }  \\  \\  \because \boxed{ { \sec}^{2}  \theta - 1 =  { \tan}^{2}  \theta \: } \\   \\ \implies \: 4 \sin \theta \sqrt{ { \tan}^{2}  \theta}  \\  \\  \implies \: 4 \tan \theta \:  \sin \theta

LHS = RHS

Hence proved .

Similar questions