Math, asked by brainly2828, 1 month ago

Answer please this question
No spam

Attachments:

Answers

Answered by VεnusVεronίcα
47

Question :

If neither A nor A + B is an odd multiple of π/2 and if m sinB = n sin (2A + B), then prove that :

(m + n) TanA = (m – n) Tan (A + B)

 \\

\qquad_____________

 \\

Explaination :

Neither A nor (A – B) is an odd multiple of π/2.

 \:

Given that, m sinB = n sin (2A + B).

 \pmb{  \frak{\dashrightarrow \:  \dfrac{m}{n}  =  \dfrac{sin \: (2A + B)}{sinB} }}

 \:

Appy componendo and dividendo rule :

  \pmb{\frak{ \dashrightarrow \: \dfrac{ m+ n}{m - n}   = \dfrac{sin \: (2A + B) + sinb}{sin \: (2A + B) - sinB} }}

 \:

 \pmb { \frak{ \dashrightarrow \: \dfrac{m + n}{m - n}  =  \dfrac{2sin \:  \bigg( \dfrac{2A + B  + B}{2}  \bigg) \: cos \:  \bigg (\dfrac{2A+ B-B}{2} \bigg) }{ \bigg( \dfrac{2A + B + B}{2} \bigg) \: sin \:  \bigg (\dfrac{2A+ B - B}{2}  \bigg) }  }}

 \:

 \pmb{ \frak{ \dashrightarrow \:  \dfrac{m + n}{m - n}  =  \dfrac{sin \: (A + B) \: cosA}{cos \: (A+ B) \: sinA} }}

 \:

 \pmb{ \frak{ \dashrightarrow \: \dfrac{m + n}{m - n}  =  \dfrac{tan \: (A + B)}{tan \:A }  }}

 \:

 \pmb{ \frak{  \dashrightarrow \: (m + n) \: tanA = (m - n) \: tan \: (A+B)}}

 \:

Henceforth, proved!

Answered by Anonymous
1

Answer:

thanks..

Step-by-step explanation:

Neither A nor (A – B) is an odd multiple of π/2.

Given that, m sinB = n sin (2A + B).

Appy componendo and dividendo rule :

Henceforth, proved!

Similar questions