Math, asked by mrunaldhone23, 4 months ago

answer plizzz .......​

Attachments:

Answers

Answered by Anonymous
5

\huge\beta\orange{Answer}

Y=30° bcz We know that The angles on linear pair are always = 180°

SO,

90° + 3y = 180°

3y = 180°- 90°

3y = 90°

y= 90° ÷ 3

Y = 30°

Hope it helps...

Answered by Rubellite
9

\Large{\underbrace{\sf{\pink{Required\:Solution:}}}}

Given thαt,

  • \displaystyle{\sf{ \angle AOC = \angle DOB = 3y}} reαson : verticαlly opposite αngle.
  • \displaystyle{\sf{ \angle FOD = \angle BOE = 90^{\circ}}} reαson : verticαlly opposite αngle.
  • \displaystyle{\sf{ \angle COE= \angle FOD= 30^{\circ}}} reαson : verticαlly opposite αngle.

◾️We need to find the vαlue of y.

___________

According to the question,

\longrightarrow{\sf{ \angle AOF +\angle FOD+ \angle DOB=180^{\circ}}}

  • Reason - Linear pair axiom.
  • Substitute the values.

\longrightarrow{\sf{ 90^{\circ}+30^{\circ}+3y=180^{\circ}}}

\longrightarrow{\sf{ 120^{\circ}+3y=180^{\circ}}}

  • Transpose 120° to R.H.S.

\longrightarrow{\sf{ 3y=180^{\circ}-120^{\circ}}}

\longrightarrow{\sf{ 3y=60^{\circ}}}

\longrightarrow{\sf{ y= \dfrac{60^{\circ}}{3}}}

\longrightarrow{\sf{ y= \dfrac{\cancel{60^{\circ}}}{\cancel{3}}}}

\large{:}\implies{\boxed{\sf{\pink{ y = 20^{\circ}}}}}

Hence, the value of y is 20°

And we are done! :D

__________________________

Similar questions