answer pls for 50 pts.
try to be fast
Answers
Question:-
Find the nature of the roots of the quadratic equation, if the real roots exist. Find them,
a) 2x² - 3x + 5 = 0 (b) 3x² - 4√3x + 4
Answer 1.
a) 2x² - 3x + 5 = 0
The above equation is in the form ax² + bx + c = 0
Here; a = 2, b = - 3 and c = 5
We know that,
D = b² - 4ac
(D < 0)
So, no real roots exist.
b) 3x² - 4√3x + 4
Here; a = 3, b = -4√3 and c = 4
D = b² - 4ac
Hence, it have two roots which are equal.
The roots are 2√3/3 and 2√3/3.
Question:-
find the value of k so that they have equal roots
(a) 2x² + kx + 3 = 0 (b) kx(x - 2) + 6 = 0
Answer 2.
a) 2x² + kx + 3 = 0
The above equation is in the form ax² + bx + c = 0
Here, a = 2, b = k and c = 3
The above equation has two equal roots. So,
D = b² - 4ac = 0
Value of k is ±2√6.
b) kx(x - 2) + 6 = 0
kx² - 2kx + 6 = 0
Here; a = k, b = -2k and c = 6
The above equation has two equal roots. So,
D = b² - 4ac = 0
Value of k is 6.
Question:-
Find the value of k for which the equation x² - 4x + k = 0 has distinct real roots.
Answer 3.
x² - 4x + k = 0
The above equation is in the form ax² - bx + c
Here; a = 1, b = -4 and c = k
Roots are distinct and real.
D > 0
b² - 4ac > 0
Value of k < 4.
Question:-
Find the roots 1/x+4 -1/x-7 =11/30
Answer 4.
Using quadratic formula
Here; a = 1, b = -3 and c = 2
Roots of the equations are 2, 1
Answer:
Question:-
Find the nature of the roots of the quadratic equation, if the real roots exist. Find them,
a) 2x² - 3x + 5 = 0 (b) 3x² - 4√3x + 4
Answer 1.
a) 2x² - 3x + 5 = 0
The above equation is in the form ax² + bx + c = 0
Here; a = 2, b = - 3 and c = 5
We know that,
D = b² - 4ac
\implies\:\sf{(-3)^2\:-\:4(2)(5)}⟹(−3)
2
−4(2)(5)
\implies\:\sf{9\:-\:40}⟹9−40
\implies\:\sf{-\:31}⟹−31 (D < 0)
So, no real roots exist.
b) 3x² - 4√3x + 4
Here; a = 3, b = -4√3 and c = 4
D = b² - 4ac
\implies\:\sf{(-4\sqrt{3})^2\:-\:4(3)(4)}⟹(−4
3
)
2
−4(3)(4)
\implies\:\sf{48\:-\:48}⟹48−48
\implies\:\sf{0}⟹0
Hence, it have two roots which are equal.
\implies\:\sf{x\:=\:\frac{-b\pm \sqrt{D}}{2a}}⟹x=
2a
−b±
D
\implies\:\sf{x\:=\:\frac{-(-4\sqrt{3})\pm \sqrt{0}}{2(3)}}⟹x=
2(3)
−(−4
3
)±
0
\implies\:\sf{x\:=\:\frac{4\sqrt{3}\pm \sqrt{0}}{6}}⟹x=
6
4
3
±
0
\implies\:\sf{x\:=\:\frac{2\sqrt{3}+0}{3}, \:\frac{2\sqrt{3}-0}{3}}⟹x=
3
2
3
+0
,
3
2
3
−0
The roots are 2√3/3 and 2√3/3.
Question:-
find the value of k so that they have equal roots
(a) 2x² + kx + 3 = 0 (b) kx(x - 2) + 6 = 0
Answer 2.
a) 2x² + kx + 3 = 0
The above equation is in the form ax² + bx + c = 0
Here, a = 2, b = k and c = 3
The above equation has two equal roots. So,
D = b² - 4ac = 0
\implies\:\sf{(k)^2\:-\:4(2)(6)\:=\:0}⟹(k)
2
−4(2)(6)=0
\implies\:\sf{k^2\:-\:24\:=\:0}⟹k
2
−24=0
\implies\:\sf{k^2\:=\:24}⟹k
2
=24
\implies\:\sf{k\:=\:\pm\sqrt{24}}⟹k=±
24
\implies\:\sf{k\:=\:\pm2\sqrt{6}}⟹k=±2
6
Value of k is ±2√6.
b) kx(x - 2) + 6 = 0
kx² - 2kx + 6 = 0
Here; a = k, b = -2k and c = 6
The above equation has two equal roots. So,
D = b² - 4ac = 0
\implies\:\sf{(-2k)^2\:-\:4(k)(6)\:=\:0}⟹(−2k)
2
−4(k)(6)=0
\implies\:\sf{4k^2\:-\:24k\:=\:0}⟹4k
2
−24k=0
\implies\:\sf{4k(k-6)\:=\:0}⟹4k(k−6)=0
\implies\:\sf{k\:=\:\frac{0}{4}, 6}⟹k=
4
0
,6
\implies\:\sf{k\:=\:0, \:6}⟹k=0,6
Value of k is 6.
Question:-
Find the value of k for which the equation x² - 4x + k = 0 has distinct real roots.
Answer 3.
x² - 4x + k = 0
The above equation is in the form ax² - bx + c
Here; a = 1, b = -4 and c = k
Roots are distinct and real.
D > 0
b² - 4ac > 0
\implies\:\sf{(-4)^2\:-\:4(1)(k)\:>\:0}⟹(−4)
2
−4(1)(k)>0
\implies\:\sf{16\:\:-\:4k\:>\:0}⟹16−4k>0
\implies\:\sf{4k\:<\:16}⟹4k<16
\implies\:\sf{k\:<\:4}⟹k<4
Value of k < 4.
Question:-
Find the roots 1/x+4 -1/x-7 =11/30
Answer 4.
\sf{\frac{1}{x+4}\:-\:\frac{1}{x-7}\:=\:\frac{11}{30}}
x+4
1
−
x−7
1
=
30
11
\implies\:\sf{\frac{(x-7)\:-\:(x+4)}{(x+4)(x-7)}\:=\:\frac{11}{30}}⟹
(x+4)(x−7)
(x−7)−(x+4)
=
30
11
\implies\:\sf{\frac{-11}{(x+4)(x-7)}\:=\:\frac{11}{30}}⟹
(x+4)(x−7)
−11
=
30
11
\implies\:\sf{-11(30)\:=\:11[(x+4)(x-7)]}⟹−11(30)=11[(x+4)(x−7)]
\implies\:\sf{-330\:=\:11[(x^2\:-\:7x\:+\:4x\:-\:28)}⟹−330=11[(x
2
−7x+4x−28)
\implies\:\sf{-30\:=\:x^2\:-\:3x\:-\:28}⟹−30=x
2
−3x−28
\implies\:\sf{x^2\:-\:3x\:+\:2=\:0}⟹x
2
−3x+2=0
Using quadratic formula
Here; a = 1, b = -3 and c = 2
\implies\:\sf{x\:=\:\frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}}⟹x=
2a
−b±
b
2
−4ac
\implies\:\sf{x\:=\:\frac{ - (-3)\pm \sqrt{ {(-3)}^{2} - 4(1)(2) } }{2(1)}}⟹x=
2(1)
−(−3)±
(−3)
2
−4(1)(2)
\implies\:\sf{x\:=\:\frac{ 3\pm \sqrt{ 9 - 8} }{2}}⟹x=
2
3±
9−8
\implies\:\sf{x\:=\:\frac{3\:\pm\:1}{2}}⟹x=
2
3±1
\implies\:\sf{x\:=\:\frac{3\:+\:1}{2}, \:\frac{3\:-\:1}{2}}⟹x=
2
3+1
,
2
3−1
\implies\:\sf{x\:=\:\frac{4}{2}\:=\:2,\:\frac{2}{2}\:=\:1}⟹x=
2
4
=2,
2
2
=1
Roots of the equations are 2, 1