Math, asked by hahahahjajajajajaj, 1 day ago

Answer pls with explanation

Attachments:

Answers

Answered by StarFighter
6

Answer:

Question :-

  • Find the height of a cylinder whose diameter is 14 cm and total surface area is 968 cm².

Given :-

  • A cylinder whose diameter is 14 cm and total surface area is 968 cm².

To Find :-

  • What is the height of a cylinder.

Formula Used :-

\clubsuit Radius Formula :

\bigstar \: \: \sf\boxed{\bold{\pink{Radius =\: \dfrac{Diameter}{2}}}}\: \: \: \bigstar\\

\clubsuit Total Surface Area Of Cylinder Formula :

\small \bigstar \: \: \sf\boxed{\bold{\pink{Total\: Surface\:  Area_{(Cylinder)} =\: 2{\pi}r(r + h)}}}\: \: \: \bigstar\\

where,

  • π = Pie or 22/7
  • r = Radius
  • h = Height

Solution :-

First, we have to find the radius of a cylinder :

Given :

  • Diameter = 14 cm

According to the question by using the formula we get,

\implies \bf Radius =\: \dfrac{Diameter}{2}\\

\implies \sf Radius =\: \dfrac{14}{2}\\

\implies \sf\bold{\blue{Radius =\: 7\: cm}}\\

Hence, the radius is 7 cm .

Now, we have to find the height of a cylinder :

Given :

  • Radius = 7 cm
  • Total Surface Area = 968 cm²

According to the question by using the formula we get,

\small \implies \bf Total\: Surface\: Area_{(Cylinder)} =\: 2{\pi}r(r + h)\\

\implies \sf 968 =\: 2 \times \dfrac{22}{7} \times 7(7 + h)\\

\implies \sf 968 =\: \dfrac{2 \times 22 \times 7}{7} \times (7 + h)\\

\implies \sf 968 =\: \dfrac{308}{7} \times (7 + h)\\

\implies \sf 968 \times \dfrac{7}{308} =\: 7 + h\\

\implies \sf \dfrac{6776}{308} =\: 7 + h\\

\implies \sf 22 - 7 =\: h\\

\implies \sf 15 =\: h\\

\implies \sf\bold{\red{h =\: 15\: cm}}\\

\sf\bold{\purple{\underline{\therefore\: The\: height\: of\: a\: cylinder\: is\: 15\: cm\: .}}}\\

Similar questions