answer plssssss hsusheheheueu
Answers
Answer:
answer is 7
Step-by-step explanation:
here in triangle PBO(right angled triangle)
PO is perpendicular
PB is base
BO is hypoteus, so by applying Pythagoras theorem:
BO^2=PB^2 +PO^2
PO^2=25-9=16
PO=√16=4cm
Now in triangle QDO (right angled triangle)
DO^2=QO^2 +QD^2
QO^2=25-16=9
QO=√9=3
so the length of PQ=PO+QO=4+3=7
Question :-
In the given figure, O is the centre of circle with radius 5 cm OP ⊥ AB, OQ ⊥ CD, AB || CD, AB = 6 cm, AB = 6 cm and CD = 8 cm. Determine PQ.
Before solving let us do some construction.
Construction :-
Join AO and OD
Solution :-
Consider ΔAOP and ΔDOQ
OP ⊥ AB, OQ ⊥ CD [ Given ]
So, ∠APO = 90°, ∠DQO = 90°
Therefore, ΔAOP and ΔDOQ are Right angled triangles.
In ΔAOP, ΔDOQ
AO = OD = 5 cm [ Radius of the circle ]
AB is a chord drawn to a circle and AB ⊥ OP
Now we need to recall a theorem :
Theorem :- The perpendicular from the centre of a circle to a chord bisects the chords
Therefore, AP = AB / 2 = 6 / 2 = 3 cm
Similarly, QD = CD / 2 = 8 / 2 = 4 cm
In ΔAOP, By pythagoras theorem
AO² = OP² + AP²
⇒ 5² = OP² + 3²
⇒ 25 = OP² + 9
⇒ 25 - 9 = OP²
⇒ 16 = OP²
⇒ OP = √16 = 4 cm
In ΔDOQ, By pythagoras theorem
DO² = OQ² + DQ²
⇒ 5² = OQ² + 4²
⇒ 25 = OQ² + 16
⇒ 25 - 16 = OQ²
⇒ 9 = OQ²
⇒ OQ = √9 = 3 cm
From figure,
PQ = OP + OQ = 4 + 3 = 7 cm.