Math, asked by sudharshan01, 2 days ago

answer plz ?????????​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \tt{x(x - y) = 8y - 7}

 \sf{ \implies \: x^{2}  - xy = 8y - 7}

 \sf{ \implies \: x^{2}  - xy  - (8y - 7) = 0}

 \sf{ \implies \: x =  \dfrac{y \pm \sqrt{ {y}^{2} + 4(8y - 7) }}{2}}

 \sf{ \implies \: x =  \dfrac{y \pm \sqrt{ {y}^{2} + 32y -28 }}{2}}

Since, x is an integer, so,

\sf{y^2+32y-28=0},

So,

 \sf{ \implies \: x =  \dfrac{y}{2}}

 \sf{ \implies \:  \dfrac{x}{y} =  \dfrac{1}{2}}

 \sf{ \implies \:  \dfrac{x + y}{x - y} =  \dfrac{1 + 2}{1 - 2}}

 \sf{ \implies \:  \dfrac{x + y}{x - y} =  - 3}

Similar questions