Math, asked by ashishsali999, 5 months ago

answer plzz you have a good day and I have to go to the store​

Attachments:

Answers

Answered by Bᴇʏᴏɴᴅᴇʀ
14

Question:-

1. Find the adjoint matrix of \sf \left[\begin{array}{c c} sin\theta \: \: 1 \\ 0 \: \: cos\theta\end{array}\right]

2. Find the derivative of the inverse function of the following:-

\sf y = x.7^x

Answer:-

1.

The adjoint of a matrix is transpose of the co-factor matrix.

\sf M = \left[\begin{array}{c c} a \: \: b \\ c \: \: d\end{array}\right]

\sf adj.[M] = \left[\begin{array}{c c} d \: \: -b \\ -c \: \: \: a\end{array}\right]

Similarly,

\sf [M] = \left[\begin{array}{c c} sin\theta \: \: 1 \\ 0 \: \: cos\theta\end{array}\right]

\bf adj.[M] = \left[\begin{array}{c c} cos\theta \: \: -0 \\ -1 \: \: sin\theta\end{array}\right]

\implies\bf\green{adj.[M] = \left[\begin{array}{c c} cos\theta \: \: \infty \\ -1 \: \: sin\theta\end{array}\right]}\dashrightarrow\bf\red{[\because -0 = \infty]}

2.

Derivative of \sf y = x.7^x

Differentiating with respect to x:-

\sf \dfrac{dy}{dx} = \dfrac{d}{dx}(x.7^x)

\sf x \dfrac{d}{dx} [7^x] + 7^x \dfrac{d}{dx} (x)

\sf x.7^x log7 + 7^x \times 1

\sf 7x(x log7 +1)

Derivative of inverse function:-

\bf y = f(x) \implies \dfrac{dy}{dx} = \dfrac{1}{\bigg[\dfrac{dy}{dx}\bigg]}

\implies\bf\green{\dfrac{1}{7^x(x log7 + 1)}}

Similar questions