Math, asked by physicsRSP, 3 months ago

Answer Properly, This is my First Question

Question : What is the area of triangle with sides a, b and √(a² + b²) ?
If possible provide a diagram

Don't Copy. Give answer fast. I will mark as Genius

Answers

Answered by RockingStarPratheek
54

Area of Triangle whose sides are \sf{a} , \sf{b} and \sqrt{\sf{a^2+b^2}} = \sf{ab/2}

We are all aware of formula to calculate Perimeter of Triangle! It's Simple ; Perimeter of Triangle = Sum of All Sides. We just add all the sides of the triangle and the result will be our perimeter!

\longrightarrow Perimeter of Triangle = Sum of All Sides

We are Given that the Sides of Triangle are \sf{a} , \sf{b} and \sqrt{\sf{a^2+b^2}}

\longrightarrow Perimeter of Triangle = \sf{a+b+\sqrt{a^2+b^2}}

Now we use the Concept of Herons Formula! Also known as Hero's Formula is used to find the area of a triangle when we know the length of all its sides. First for doing it, We need to find Semi Perimeter of Triangle which is exactly half of Perimeter of Triangle

\longrightarrow Semi Perimeter of Triangle = \sf{Perimeter/2}

We already found that Perimeter of Triangle = \sf{a+b+\sqrt{a^2+b^2}}

\longrightarrow Semi Perimeter of Triangle = \sf{(a+b+\sqrt{a^2+b^2})/2}

Heron's Formula is given by \sf{\sqrt{s(s-a)(s-b)(s-c)}} where s - Semi Perimeter, a, b and c are Sides of the Triangle. We have s = \sf{(a+b+\sqrt{a^2+b^2})/2} and a = a, b = b, c = \sf{\sqrt{a^2+b^2}}. Substitute them in \sf{\sqrt{s(s-a)(s-b)(s-c)}} Formula to find the area of the Triangle!

\longrightarrow Area of Triangle = \sf{\sqrt{s(s-a)(s-b)(s-c)}}

\longrightarrow Area of Triangle = \sf{\sqrt{s(s-a)(s-b)(s-\sqrt{a^2+b^2})}}

=\sf{\sqrt{\frac{a+b+\sqrt{a^2+b^2}}{2}\left(\frac{a+b+\sqrt{a^2+b^2}}{2}-a\right)\left(\frac{a+b+\sqrt{a^2+b^2}}{2}-b\right)\left(\frac{a+b+\sqrt{a^2+b^2}}{2}-\sqrt{a^2+b^2}\right)}}

\sf{=\sqrt{\frac{a+b+\sqrt{a^2+b^2}}{2}\cdot \frac{b+\sqrt{a^2+b^2}-a}{2}\left(-b+\frac{a+b+\sqrt{a^2+b^2}}{2}\right)\left(\frac{a+b+\sqrt{a^2+b^2}}{2}-\sqrt{a^2+b^2}\right)}}

\sf{=\sqrt{\frac{a+b+\sqrt{a^2+b^2}}{2}\cdot \frac{b+\sqrt{a^2+b^2}-a}{2}\cdot \frac{a+\sqrt{a^2+b^2}-b}{2}\left(\frac{a+b+\sqrt{a^2+b^2}}{2}-\sqrt{a^2+b^2}\right)}}

\sf{ =\sqrt{\frac{a+b+\sqrt{a^2+b^2}}{2}\cdot \frac{a+b-\sqrt{a^2+b^2}}{2}\cdot \frac{b+\sqrt{a^2+b^2}-a}{2}\cdot \frac{a+\sqrt{a^2+b^2}-b}{2}}}

\sf{=\sqrt{\frac{\left(a+b+\sqrt{a^2+b^2}\right)\left(-a+\sqrt{a^2+b^2}+b\right)\left(-b+\sqrt{a^2+b^2}+a\right)\left(a+b-\sqrt{a^2+b^2}\right)}{2\cdot \:2\cdot \:2\cdot \:2}}}

\sf{=\sqrt{\frac{\left(a+b+\sqrt{a^2+b^2}\right)\left(-a+\sqrt{a^2+b^2}+b\right)\left(-b+\sqrt{a^2+b^2}+a\right)\left(a+b-\sqrt{a^2+b^2}\right)}{16}}}

\longrightarrow Area of Triangle = \sf{\sqrt{4a^2b^2/16}}

\longrightarrow Area of Triangle = \sf{\sqrt{a^2b^2/4}}

\large\boxed{\boxed{\longrightarrow\textbf{Area of Triangle = ab/2}}}

Attachments:

ItzArchimedes: Awesome!
Anonymous: Marvellous !
Blossomfairy: Nice!
prince5132: Fabulous !!
mddilshad11ab: Fantastic¶
Mysterioushine: Great!
MisterIncredible: Intelligent ◖⚆ᴥ⚆◗
ButterFliee: Nice!
Anonymous: Outstanding :)
Similar questions