Math, asked by riyadas96, 1 year ago

Answer question number 3​

Attachments:

Answers

Answered by Mythili1703
2
Here is ur ans
Please mark it the brainliest if you are satisfied with this answer
Attachments:
Answered by Shubhendu8898
5

Answer: \frac{q^2}{p\sqrt{q^2-p^2}}

Step-by-step explanation:

Given,

q\cos\theta=p\\\;\\\cos\theta=\frac{p}{q}

We know  that,

\sin^2\theta=1-\cos^2\theta\\\;\\\sin^2\theta=1-(\frac{p}{q})^2\\\;\\\sin^2\theta=1-\frac{p^2}{q^2}\\\;\\\sin^2\theta=\frac{q^2-p^2}{q^2}\\\;\\\sin\theta=\frac{\sqrt{q^2-p^2}}{q}

Now,

\sin\theta.\cos\theta=\frac{\sqrt{p^2-q^2}}{q}\times\frac{p}{q}\\\;\\\sin\theta.\cos\theta=\frac{p\sqrt{p^2-q^2}}{q^2}

And,

\sin^2\theta-\cos^2\theta=1-\frac{p^2}{q^2}-\frac{p^2}{q^2}\\\;\\\sin^2\theta-\cos^2\theta=1

We have,

\tan\theta-\cot\theta\\\;\\=\frac{\sin\theta}{\cos\theta}-\frac{\cos\theta}{\sin\theta}\\\;\\=\frac{\sin^2\theta-\cos^2\theta}{\sin\theta.\cos\theta}\\\;\\=\frac{1}{\frac{p\sqrt{q^2-p^2}}{q^2}}\\\;\\=\frac{q^2}{p\sqrt{q^2-p^2}}


MOSFET01: nice
Similar questions