Math, asked by vibhanshu8441, 1 year ago

answer question with photos​

Attachments:

AbhijithPrakash: Do we have to prove the following??
vibhanshu8441: yes
vibhanshu8441: choose the correct answer and prove it
AbhijithPrakash: Yeah ok
vibhanshu8441: answer fast
AbhijithPrakash: Done!!
vibhanshu8441: thanks bro
AbhijithPrakash: NP :)
vibhanshu8441: answer my another question
vibhanshu8441: pls

Answers

Answered by AbhijithPrakash
23

We are given the following equation;

\text{a}^{\frac{1}{3}}+\text{b}^{\frac{1}{3}}+\text{c}^{\frac{1}{3}}=0

So, For solving the question, let's subtract "\text{c}^{\frac{1}{3}}" from both the sides, i.e., the L.H.S. and the R.H.S.

\text{a}^{\frac{1}{3}}+\text{b}^{\frac{1}{3}}+\text{c}^{\frac{1}{3}}-\text{c}^{\frac{1}{3}}=0-\text{c}^{\frac{1}{3}}

Simplify;

\text{a}^{\frac{1}{3}}+\text{b}^{\frac{1}{3}}=-\text{c}^{\frac{1}{3}}

Now, let's cube both the sides of the above equation;

(\text{a}^{\frac{1}{3}}+\text{b}^{\frac{1}{3}})^3=(-\text{c}^{\frac{1}{3}})^3

Simplify;  :)

(\text{a}^{\frac{1}{3}})^3+(\text{b}^{\frac{1}{3}})^3+3\cdot\text{a}^{\frac{1}{3}}\cdot\text{b}^{\frac{1}{3}}\cdot(\text{a}^{\frac{1}{3}}+\text{b}^{\frac{1}{3}})=-c

Now as we know that "\text{a}^{\frac{1}{3}}+\text{b}^{\frac{1}{3}}=-\text{c}^{\frac{1}{3}}", so let's replace \text{a}^{\frac{1}{3}}+\text{b}^{\frac{1}{3}} to -\text{c}^{\frac{1}{3}}.

So, our equation looks like;

(\text{a}^{\frac{1}{3}})^3+(\text{b}^{\frac{1}{3}})^3+3\cdot\text{a}^{\frac{1}{3}}\cdot\text{b}^{\frac{1}{3}}\cdot(-\text{c}^{\frac{1}{3}})=-c

Now lets add c on both the sides;

(\text{a}^{\frac{1}{3}})^3+(\text{b}^{\frac{1}{3}})^3+3\cdot\text{a}^{\frac{1}{3}}\cdot\text{b}^{\frac{1}{3}}\cdot(-\text{c}^{\frac{1}{3}})+c=-c+c

Let's Simplify;

\text{a}+\text{b}+\text{c}+3\cdot\text{a}^{\frac{1}{3}}\cdot\text{b}^{\frac{1}{3}}\cdot(-\text{c}^{\frac{1}{3}})=0

Now let's subtract "3\cdot\text{a}^{\frac{1}{3}}\cdot\text{b}^{\frac{1}{3}}\cdot(-\text{c}^{\frac{1}{3}})" from both the sides;

We get;

\text{a}+\text{b}+\text{c}+3\cdot\text{a}^{\frac{1}{3}}\cdot\text{b}^{\frac{1}{3}}\cdot(-\text{c}^{\frac{1}{3}})-3\cdot\text{a}^{\frac{1}{3}}\cdot\text{b}^{\frac{1}{3}}\cdot(-\text{c}^{\frac{1}{3}})=0-3\cdot\text{a}^{\frac{1}{3}}\cdot\text{b}^{\frac{1}{3}}\cdot(-\text{c}^{\frac{1}{3}})

Simplifying the above equation;

\text{a}+\text{b}+\text{c}=-3\cdot\text{a}^{\frac{1}{3}}\cdot\text{b}^{\frac{1}{3}}\cdot(-\text{c}^{\frac{1}{3}})

Let's get rid of the parenthesis from the R.H.S.;

\text{a}+\text{b}+\text{c}=3\cdot\text{a}^{\frac{1}{3}}\cdot\text{b}^{\frac{1}{3}}\cdot\text{c}^{\frac{1}{3}}

As we got a much simpler equation, let's cube both the sides;

(\text{a}+\text{b}+\text{c})^3=(3\cdot\text{a}^{\frac{1}{3}}\cdot\text{b}^{\frac{1}{3}}\cdot\text{c}^{\frac{1}{3}})^3

When we simplify the above equation, we get;

(\text{a}+\text{b}+\text{c})^3=(3\text{a}\text{b}\text{c}^{\frac{1}{3}})^3

And Simplifying it further, we get;

\bold{(a+b+c)^3=27abc}

Now let's check the options,

We got the option (b) as the answer.


Anonymous: Awesome!!
AbhijithPrakash: Thanks Dude
vibhanshu8441: answer my another question
vibhanshu8441: pls bro
vibhanshu8441: pls answer
Anonymous: Awesome
Similar questions