answer Question24 and explain it plzzz
Answers
Answer:
545
Solution:
Given : x² + 1/x² = 27 ---------(1)
To find : 3x³ + 5x - 3/x³ - 5/x
Now,
We know that ,
( a - b)² = a² - 2ab + b²
Thus,
=> (x - 1/x)² = x² - 2•x•(1/x) + (1/x)²
=> (x - 1/x)² = x² - 2 + 1/x²
=> (x - 1/x)² = x² + 1/x² - 2
=> (x - 1/x)² = 27 - 2 { Using eq-(1) }
=> (x - 1/x)² = 25
=> x - 1/x = √25
=> x - 1/x = 5 -----------(2)
Also,
We know that ,
a³ - b³ = (a - b)(a² + ab + b²)
Thus,
=> x³ - (1/x)³ = (x - 1/x)•[x² + x•(1/x) + (1/x)²]
=> x³ - 1/x³ = (x - 1/x)•(x² + 1 + 1/x²)
=> x³ - 1/x³ = (x - 1/x)•(x² + 1/x² + 1)
=> x³ - 1/x³ = 5•(27 + 1)
{ Using eq-(1) and (2) }
=> x³ - 1/x³ = 5•28
=> x³ - 1/x³ = 140 ----------(3)
Now,
3x³ + 5x - 3/x³ - 5/x = 3x³ - 3/x³ + 5x - 5/x
= 3(x³ - 1/x³) + 5(x - 1/x)
{ using eq-(2) and (3) }
= 3•140 + 5•5
= 520 + 25
= 545
Hence,
The required value of
3x³ + 5x - 3/x³ - 5/x is 545 .
l thing your answere
Step-by-step explanation:
x^2+1/x^2=27
(x-1/X)^2=27-2=25
so,(x-1/x)=5
(x-1/X)^3=x^3&1/x^3-3xXx1/x(x-1/X)
5^3=x^3-1/x^3X5
125=x^3=1/x^3-1/x^3-5/X
3(x^3-1)x^3)+5(x-1/X)
3(x^3-1/x^3)+5(x-1/X)
3x140+5X5
420+25=445