Math, asked by educationmaster37, 9 months ago

answer red mark question please​

Attachments:

Answers

Answered by Anonymous
15

Given polynomial :

  • 2x² + 5x - 3 = 0

To Find :

  • Zeroes of the polynomial.
  • Verify the relationship between zeroes and coefficients.

Solution :

Let's solve and find the zeroes using the factorization method.

\mathtt{2x^2\:+5x-3=0}

\mathtt{2x^2\:+6x\:-x\:-3=0}

\mathtt{2x(x+3)\:-1(x+3)=0}

\mathtt{(x+3)\:\:\:(2x-1)\:=0}

\mathtt{(x+3)\:=0\:\:or\:(2x-1)\:=\:0}

\mathtt{x+3=0\:\:or\:\:2x-1=0}

\mathtt{x=\:-\:3\:\:or\:\:2x=1}

\mathtt{x=-\:3\:or\:\:x\:=\:{\dfrac{1}{2}}}

\large{\boxed{\mathtt{\red{Roots\:of\:the\:equation\:are\:-3\:and\:{\dfrac{1}{2}}}}}}

Relationship between zeroes and coefficients :

  • Sum of zeroes :

Let,

  • α = - 3
  • β = 1/2

α + β = \mathtt{-3\:+\:{\dfrac{1}{2}}}

\mathtt{\dfrac{-6+1}{2}}

\mathtt{\dfrac{-5}{2}}

\mathtt{\dfrac{-(-5)}{2}}

\mathtt{\dfrac{5}{2}}

Sum of zeroes :

\mathtt{\dfrac{Coefficient\:of\:x}{Coefficient\:of\:x^2}}

\mathtt{\dfrac{5}{2}}

Hence, we see the relationship between zeroes and coefficients is satisfied.

Comparing the given quadratic polynomial with general form :

  • a = 2 = coefficient of
  • b = 5 = coefficient of x
  • c = -3 = constant.

Product of zeroes :

αβ = \mathtt{-3\:\times\:{\dfrac{1}{2}}}

\mathtt{\dfrac{-3}{2}}

Product of zeroes :

\mathtt{\dfrac{Constant}{Coefficient\:of\:x^2}}

\mathtt{\dfrac{-3}{2}}

Hence, relationship between product of zeroes and coefficients is satisfied.

Answered by Anonymous
19

AnswEr :

\:\bullet\:\sf\ Given \: polynomial = 2x^2 - 3 + 5x \\ \\ \qquad\sf\ Or, \: it \: can \: be \: 2x^2 + 5x - 3

\underline{\bigstar\:\textsf{According \: to \: given \: now;}}

\normalsize\star{\underline{\boxed{\mathbb \red{ZEROES \: OF \: POLYNOMIAL  -}}}}

\normalsize\ : \implies\sf\ 2x^2 + 5x  - 3

\normalsize\ : \implies\sf\ 2x^2 + 6x - x - 3

\normalsize\ : \implies\sf\ 2x(x + 3) + 1(x + 3)

\normalsize\ : \implies\sf\ (x + 3)(2x - 1)

\normalsize\ : \implies \begin{cases} \underline\textbf{case  1:} \\ \sf\ (x + 3) = 0 \\ \sf\ x = 0 -  3 \\ {\boxed{\sf{x = - 3}}} \end{cases}

\normalsize\ : \implies\begin{cases} \underline\textbf{case  2:} \\ \sf\ (2x -1) = 0 \\ \sf\ 2x = 1 \\ x = \frac{1}{2} \\  {\boxed{\sf{x = \frac{1}{2} }}}  \end{cases}

\normalsize\ : \implies{\underline{\boxed{\sf \blue{Hence, \: the \: value \: of \: \alpha = - 3 \: and \: \beta = \frac{1}{2} }}}}

\normalsize\star{\underline{\boxed{\mathbb \red{VERIFICATION -}}}}

\underline{\frak{Sum \: of \: zeroes:}}

\normalsize\ : \implies\sf\ \alpha + \beta = \frac{-(Coefficient \: of \: x)}{Coefficient \: of \: x^2}

\normalsize\ : \implies\sf\ -3 + \frac{1}{2} = \frac{-b}{a}

\normalsize\ : \implies\sf\frac{-6 + 1}{2}  = \frac{5}{2}

\normalsize\ : \implies\sf\frac{5}{2}= \frac{5}{2}

\underline{\frak{Product \: of \: zeroes:}}

\normalsize\ : \implies\sf\ \alpha\beta = \frac{constant \: term}{coefficient \: of \: x^2}

\normalsize\ : \implies\sf\ -3 \times\ \frac{1}{2} = \frac{c}{a}

\normalsize\ : \implies\sf\frac{-3}{2}  = \frac{-3}{2}

\normalsize\ : \implies{\underline{\boxed{\sf \green{Hence \: Verified \:!!  }}}}


Rythm14: wow :D
Similar questions