Math, asked by toxic33rai, 1 month ago

Answer:Step-by-step explanation:Consider right triangle ABC, right angled at B. If AC = 17 units and BC = 8 units determine all the trigonometric ratios of angle C. ​

Answers

Answered by Xxitzking01xX
1

\huge\boxed{\boxed{\mathcal\pink{Good \: Morning \: }}}

\huge\mathcal\colorbox{lavender}{{\color{b}{✿Yøur-Añswer♡}}}

\large\bf{\underline{\red{illusion}}}

l

Step 1: Calculate the length of AB

In Δ ABC, using Pythagoras theorem, AB = √AC2−BC2

= √ 17^2−8^2

=√289−64

=√225=15

AB = 15 units .

Step 2 : Calculate the trigonometric ratios of angle C

sin C = opposite side/hypotenuse=AB/AC= 15/17

cos C = adjcent side/hypotenuse=BC/AC= 8/17

tan C =opposite side/adjcent side =AB/BC= 15/8

cot C =1/tan C =adjcent side/opposite side = BC/AB = 8/15

sec C = 1/cos C = hypotenuse/adjcent side = AC/BC= 17/8

cosec C = 1/sin C = hypotenus/eopposite side =AC/AB= 17/15

Mark me brainliest :)

Similar questions