Math, asked by ava71, 11 months ago

answer that question given above.​

Attachments:

Answers

Answered by Anonymous
4

Answer:

Lateral Surface area of Cylinder - 2πrh

Radius will be 8 cm..

so that ,

 = 2 \times  \frac{22}{7}  \times 8 \times 7

 = 2 \times 22 \times 8

 = 44 \times 8

 = 352 \:  {cm}^{2}

Total surface area of Cylinder -

 = 2\pi \: r \: h \:  + 2\pi {r}^{2}

 = 2 \times  \frac{22}{7}  \times 8 \times 7 + 2 \times  \frac{22}{7}  \times 8 \times 8

 = 352 + 401.92

 = 753.92 {cm}^{2}

hope it will help you ❣️

Answered by StarrySoul
30

\mathfrak{\huge{\underline{Solution:}}}

\textbf{\huge{\underline{Given:}}}

● Volume of cylinder = 448πcm^2

● Height = 7cm

_______________________

Let's find radius from the Volume and Height

 \hookrightarrow \sf \: Volume = 448\pi

 \hookrightarrow \sf \: \cancel\pi {r}^{2} h = 448 \cancel\pi

 \hookrightarrow \sf \:  {r}^{2} h = 448

 \hookrightarrow \sf \:  {r}^{2}  \times 7 = 448

 \hookrightarrow \sf \:  {r}^{2} =   \cancel\dfrac{448}{7}

 \hookrightarrow \sf \:  {r}^{2}  = 64

 \hookrightarrow \sf \: r =  \sqrt{64}

 \hookrightarrow \sf \:r =   \sqrt{8 \times 8}

 \hookrightarrow \sf \: r =  \large \boxed{8 \sf \:  cm}

\textbf{\underline{\underline{Lateral\:Surface\:Area:}}}

 \star \rm \: L.S.A = 2 \: \pi \: r \: h

 \sf \hookrightarrow = 2 \times  \dfrac{22}{ \cancel7}  \times 8 \times \cancel 7

 \hookrightarrow \sf \:  \large \boxed{352 \sf \:  {cm}^{2} }

\textbf{\underline{\underline{Total\:Surface\:Area:}}}

 \star \rm \: T.S.A =2\pi \: r(r + h)

 \hookrightarrow \sf \: 2 \times  \dfrac{22}{7}  \times 8(8 + 7)

 \hookrightarrow \sf \: 2 \times  \dfrac{22}{7}  \times 8 \times 15

 \hookrightarrow \sf \large \boxed{754.2  \sf \: {cm}^{2} }

Similar questions