Math, asked by insiyahr, 1 year ago

Answer the 15 one with proper steps

Attachments:

SteveUday49: hu

Answers

Answered by TPS
5
Perimeter of a quadrilateral is the sum of its four sides.

You are given 3 sides and the perimeter. So the fourth side can be found out by subtracting the sum of three sides from perimeter.
____________________________

 \text{Given three sides are:} \\  3 {x}^{2} y +  4xyz - 12 \\ 12 {x}^{2} y + 7xyz + 50 \\ 15 {x}^{2} y + 3xyz - 7x

 \text{perimeter} = 30 {x}^{2} y + 9xyz - 15x + 100

\text{Let the fourth side is M}

____________________________

\text{sum of four sides = Perimeter}\\ \\ 3 {x}^{2} y +  4xyz - 12\\ + 12 {x}^{2} y + 7xyz + 50 \\ +15 {x}^{2} y + 3xyz - 7x+M = 30 {x}^{2} y + 9xyz - 15x + 100\\ \\ 30 {x}^{2} y + 14xyz - 7x + 38 + M = 30 {x}^{2} y + 9xyz - 15x + 100\\ \\ M = 30 {x}^{2} y + 9xyz - 15x + 100 - (30 {x}^{2} y + 14xyz - 7x + 38)\\ \\ M =  30 {x}^{2} y + 9xyz - 15x + 100- 30 {x}^{2} y - 14xyz + 7x - 38\\ \\ M = -5xyz-8x+62\\ \\  \boxed{\textbf{Fourth side = -5xyz -  8x + 62} }
Answered by BrainlyFlash156
9

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{ĄNsWeR࿐}}}

Perimeter of a quadrilateral is the sum of its four sides.

You are given 3 sides and the perimeter. So the fourth side can be found out by subtracting the sum of three sides from perimeter.

____________________________

 \text{Given three sides are:} \\  3 {x}^{2} y +  4xyz - 12 \\ 12 {x}^{2} y + 7xyz + 50 \\ 15 {x}^{2} y + 3xyz - 7x

 \text{perimeter} = 30 {x}^{2} y + 9xyz - 15x + 100

\text{Let the fourth side is M}

____________________________

\text{sum of four sides = Perimeter}\\ \\ 3 {x}^{2} y +  4xyz - 12\\ + 12 {x}^{2} y + 7xyz + 50 \\ +15 {x}^{2} y + 3xyz - 7x+M = 30 {x}^{2} y + 9xyz - 15x + 100\\ \\ 30 {x}^{2} y + 14xyz - 7x + 38 + M = 30 {x}^{2} y + 9xyz - 15x + 100\\ \\ M = 30 {x}^{2} y + 9xyz - 15x + 100 - (30 {x}^{2} y + 14xyz - 7x + 38)\\ \\ M =  30 {x}^{2} y + 9xyz - 15x + 100- 30 {x}^{2} y - 14xyz + 7x - 38\\ \\ M = -5xyz-8x+62\\ \\  \boxed{\textbf{Fourth side = -5xyz -  8x + 62} }

Similar questions