Math, asked by anu2899, 1 year ago

answer the 1st question ​

Attachments:

Answers

Answered by shadowsabers03
0

Question:

   

If  \sec\theta+\tan\theta=3,  find the value of  \sin\theta.

Answer: 4/5

   

   

Step-by-step explanation:

             

\Rightarrow\ \sec^2\theta-\tan^2\theta=1 \\ \\ \Rightarrow\ (\sec\theta+\tan\theta)(\sec\theta-\tan\theta)=1 \\ \\ \Rightarrow\ 3(\sec\theta-\tan\theta)=1 \\ \\ \Rightarrow\ \sec\theta-\tan\theta=\frac{1}{3} \\ \\ \\ \Rightarrow\ (\sec\theta+\tan\theta)+(\sec\theta-\tan\theta)=3+\frac{1}{3} \\ \\ \Rightarrow\ 2\sec\theta=\frac{10}{3} \\ \\ \Rightarrow\ \sec\theta=\frac{5}{3} \\ \\ \\ \Rightarrow\ \cos\theta=\frac{3}{5}

\Rightarrow\ (\sec\theta+\tan\theta)-(\sec\theta-\tan\theta)=3-\frac{1}{3} \\ \\ \Rightarrow\ 2\tan\theta=\frac{8}{3} \\ \\ \Rightarrow\ \tan\theta=\frac{4}{3}

\Rightarrow\ \sin\theta = \cos\theta \cdot \tan\theta \\ \\ \Rightarrow\ \sin\theta= \frac{3}{5} \cdot \frac{4}{3} \\ \\ \Rightarrow\ \sin\theta=\bold{\frac{4}{5}}

Thank you. :-))

         

Similar questions