Math, asked by yaqubyousufsameer, 10 months ago

answer the 3, 4, 5 fast​

Attachments:

Answers

Answered by shadowsabers03
4

3.  We see that,

\longrightarrow\sf{\log_{x^2}\sqrt{x^2}=\log_{x^2}\left[\left(x^2\right)^{\frac{1}{2}}\right]}

Since \sf{\log_b(a^m)=m\,\log_ba,}

\longrightarrow\sf{\log_{x^2}\sqrt{x^2}=\dfrac{1}{2}\,\log_{x^2}\left(x^2\right)}

Since \sf{\log_aa=1,}

\longrightarrow\sf{\log_{x^2}\sqrt{x^2}=\dfrac{1}{2}\times1}

\longrightarrow\sf{\underline{\underline{\log_{x^2}\sqrt{x^2}=\dfrac{1}{2}}}}

4.  Given,

\longrightarrow\sf{\log_2(5x+3)=\log_2(2x+1)}

Since \sf{\log_ba=\dfrac{\log a}{\log b},}

\longrightarrow\sf{\dfrac{\log(5x+3)}{\log2}=\dfrac{\log(2x+1)}{\log 2}}

\longrightarrow\sf{\log(5x+3)=\log(2x+1)}

\longrightarrow\sf{5x+3=2x+1}

\longrightarrow\sf{3x=-2}

\longrightarrow\sf{x=-\dfrac{2}{3}}

But, since \sf{\log x} is possible only for \sf{x\ \textgreater\ 0,}

\longrightarrow\sf{5x+3\ \textgreater\ 0\quad AND\quad 2x+1\ \textgreater\ 0}

\longrightarrow\sf{x\ \textgreater-\dfrac{3}{5}\quad AND\quad x\ \textgreater-\dfrac{1}{2}}

Since \sf{-\dfrac{1}{2}\ \textgreater-\dfrac{3}{5},}

\longrightarrow\sf{x\ \textgreater-\dfrac{1}{2}}

This implies \sf{x} can't be \sf{-\dfrac{2}{3},} because \sf{-\dfrac{2}{3}\ \textless-\dfrac{1}{2}.}

Hence there are no possible values for \sf{x} and thus the equation \sf{\log_2(5x+3)=\log_2(2x+1)} has no solution.

5.  Here,

\longrightarrow\sf{2\ \textless\ 3}

\longrightarrow\sf{\dfrac{2\times3}{3}\ \textless\ \dfrac{3\times3}{3}}

\longrightarrow\sf{\underline{\underline{\dfrac{6}{3}\ \textless\ \dfrac{7}{3}\ \textless\ \dfrac{8}{3}\ \textless\ \dfrac{9}{3}}}}

So \sf{\dfrac{7}{3}} and \sf{\dfrac{8}{3}} are two rational numbers between 2 and 3.

Similar questions