●answer the 3 questions given in the pic ....fast....
●with clear steps ...
●30points !!!
#ch - arithmetic and geometric progressions
Attachments:
Answers
Answered by
1
18.
[tex]\Sigma (2^{n}-1) = \Sigma(2^{n})-\Sigma(1) = (2^{n+1}-2)-n = 2^{n+1}-n-2 [/tex]
Substituting n=50
19.
[tex]\Sigma (2^{n}+2n) = \Sigma(2^{n})+\Sigma(2n) =\Sigma(2^{n})+2\Sigma(n) =(2^{n+1}-2)+2 \frac{n(n+1)}{2} \\ \\ 2^{n+1}+n(n+1)-2[/tex]
20.
[tex]\Sigma (2^{n}-1) = \Sigma(2^{n})-\Sigma(1) = (2^{n+1}-2)-n = 2^{n+1}-n-2 [/tex]
Substituting n=50
19.
[tex]\Sigma (2^{n}+2n) = \Sigma(2^{n})+\Sigma(2n) =\Sigma(2^{n})+2\Sigma(n) =(2^{n+1}-2)+2 \frac{n(n+1)}{2} \\ \\ 2^{n+1}+n(n+1)-2[/tex]
20.
sivaprasad2000:
while writing the answer you can see a 'π' button
Answered by
4
Your solution...................
Attachments:
Similar questions