Math, asked by Abhishek5501, 4 months ago

Answer the 31th question rightly and I'll mark it as brainliest.​

Attachments:

Answers

Answered by anindyaadhikari13
10

Required Answer:-

Given to prove:

 \sf \mapsto \cos(x)  \cos(2x)  \cos(4x)  \cos(8x)  =  \dfrac{ \sin(16x) }{16 \sin(x) }

Proof:

Taking LHS,

 \sf\cos(x)  \cos(2x)  \cos(4x)  \cos(8x)

 \sf =  \dfrac{2 \sin(x) }{2 \sin(x) }  \{\cos(x) \}\cos(2x)  \cos(4x)  \cos(8x)

 \sf =  \dfrac{2 \sin(x)  \cos(x) }{2 \sin(x) }   \big\{  \cos(2x) \cos(4x)    \cos(8x) \big\}

Now, remember this formula.

 \sf \mapsto 2 \sin( \alpha )  \cos( \alpha )  =  \sin(2 \alpha )

Using this formula, we get,

 \sf =  \dfrac{\sin(2x) }{2 \sin(x) }   \big\{  \cos(2x) \cos(4x)    \cos(8x) \big\}

 \sf =  \dfrac{\sin(2x)  \cos(2x) }{2 \sin(x) }   \big\{\cos(4x)    \cos(8x) \big\}

Multiplying numerator and denominator by 2, we get,

 \sf =  \dfrac{2 \times \sin(2x)  \cos(2x) }{2 \times 2 \sin(x) }   \big\{\cos(4x)    \cos(8x) \big\}

Now, again apply the same formula.

 \sf =  \dfrac{\sin(2 \times 2x) }{4 \sin(x) }   \big\{\cos(4x)    \cos(8x) \big\}

 \sf =  \dfrac{\sin(4x) \cos(4x) }{4 \sin(x) }   \big\{\cos(8x) \big\}

Again, multiplying both numerator and denominator by 2,we get,

 \sf =  \dfrac{2 \times \sin(4x) \cos(4x) }{2 \times 4 \sin(x) }   \big\{\cos(8x) \big\}

 \sf =  \dfrac{2\sin(4x) \cos(4x) }{8 \sin(x) }   \big\{\cos(8x) \big\}

Again, applying the same formula, we get,

 \sf =  \dfrac{\sin(2 \times 4x) }{8 \sin(x) }   \big\{\cos(8x) \big\}

 \sf =  \dfrac{\sin(8x)  \cos(8x) }{8 \sin(x) }

Multiplying both numerator and denominator by 2, we get,

 \sf =  \dfrac{2 \times \sin(8x)  \cos(8x) }{2 \times 8 \sin(x) }

 \sf =  \dfrac{2\sin(8x)  \cos(8x) }{16 \sin(x) }

Applying the same formula, we get,

 \sf =  \dfrac{\sin(2 \times 8x) }{16 \sin(x) }

 \sf =  \dfrac{\sin(16x) }{16 \sin(x) }

Taking RHS,

 \sf =  \dfrac{\sin(16x) }{16 \sin(x) }

Hence, LHS = RHS (Proved)

Similar questions