Math, asked by nos13333, 5 hours ago

Answer the above file​

Attachments:

Answers

Answered by Anonymous
72

Refer to the attachment for complete solution.

All Trigonometric Basic Formulas :-

  • sin A = Perpendicular / Hypotenuse
  • cos A = Base / Hypotenuse
  • tan A = Perpendicular / base
  • cosec A = Hypotenuse / Perpendicular
  • cos A = Hypotenuse / base
  • cot A = Base / Hypotenuse
  • sec² A - tan² A = 1
  • 1 + cot² A = cosec²A
  • sin² A + cos² A = 1
  • sin A = 1 / cosec A
  • cos A = 1 / sec A
  • tan A = 1 / cot A
  • cosec A = 1 / sin A
  • sec A = 1 / cos A
  • cot A = 1 / tan A
  • tan A = sin A / cos A
  • tan A = sec A / cosec A
  • cot A = cos A / sin A
  • cot A = cosec A / cos A
  • sin ( 90° - A ) = cos A
  • cos ( 90° - A ) = sin A
  • tan ( 90° - A ) = cot A
  • cot ( 90° - A ) = tan A
  • cosec ( 90° - A ) = sec A
  • sec ( 90° - A ) = cos A

Some Commonly used identities :-

  • ( A + B ) ( A - B ) = A² - B²
  • ( A + B )² = A² + B² + 2 AB
  • ( A - B )² = A² + B² - 2 Ab
  • ( A + B + C)² = A² + B² + C² + 2 AB + 2 BC + 2 CA
  • A = √[ ( A ) ²]
  • √ A² = ± A
Attachments:
Answered by mathdude500
2

\large\underline{\sf{Given \:Question - }}

Prove that,

\rm :\longmapsto\:\dfrac{1 + sinA - cosA}{1 + sinA + cosA}  =  \sqrt{\dfrac{1 - cosA}{1 + cosA} }

\red{\large\underline{\sf{Solution-}}}

Consider LHS

\rm :\longmapsto\:\dfrac{1 + sinA - cosA}{1 + sinA + cosA}

can be rewritten as

\rm \:  =  \:\dfrac{1 + sinA - cosA}{(1 + sinA) + cosA}

On rationalizing the denominator, we get

\rm \:  =  \:\dfrac{1 + sinA - cosA}{(1 + sinA) + cosA} \times \dfrac{(1 + sinA)  -  cosA}{(1 + sinA)  -  cosA}

We know,

\boxed{ \rm \:(x + y)(x - y) =  {x}^{2} -  {y}^{2}} \\  \\  \boxed{ \rm \:{(x - y)}^{2} =  {x}^{2} +  {y}^{2} - 2xy}

So, using these Identities,

\rm \:  =  \:\dfrac{ {(1 + sinA)}^{2}  +  {cos}^{2} A - 2cosA(1 + sinA)}{ {(1 + sinA)}^{2}  -  {cos}^{2} A}

\rm  = \dfrac{1 +  {sin}^{2}A + 2sinA +  {cos}^{2} A - 2cosA - 2sinAcosA }{1 +  {sin}^{2} A + 2sinA -  {cos}^{2} A}

\rm =\dfrac{1 + ( {sin}^{2} A +  {cos}^{2} A )  + 2sinA - 2cosA- 2sinAcosA}{ {sin}^{2} A + 2sinA + (1 -  {cos}^{2}A) }

We know,

\boxed{ \rm \: {sin}^{2}x +  {cos}^{2}x = 1}

\rm =\dfrac{1 + ( 1 )  + 2sinA - 2cosA- 2sinAcosA}{ {sin}^{2} A + 2sinA + {sin}^{2}A }

\rm \:  =  \:\dfrac{1 + 1  + 2sinA - 2cosA - 2sinAcosA }{2sinA + 2 {sin}^{2} A}

\rm \:  =  \:\dfrac{2 + 2sinA - 2cosA(1 + sinA)}{2sinA(1 + sinA)}

\rm \:  =  \:\dfrac{2(1 + sinA) - 2cosA(1 + sinA)}{2sinA(1 + sinA)}

\rm \:  =  \:\dfrac{2(1 + sinA)(1 - cosA)}{2sinA(1 + sinA)}

\rm \:  =  \:\dfrac{1 - cosA}{sinA}

can be further rewritten as

\rm \:  =  \: \sqrt{\dfrac{ {(1 - cosA)}^{2} }{ {sin}^{2} A} }

\rm \:  =  \: \sqrt{\dfrac{ {(1 - cosA)}^{2} }{ 1 - {cos}^{2} A} }

\rm \:  =  \: \sqrt{\dfrac{ {(1 - cosA)}^{2} }{ (1 - {cos}^{} A)(1 + cosA)} }

\rm \:  =  \: \sqrt{\dfrac{1 - cosA}{1 + cosA} }

Hence,

\rm :\longmapsto\:\boxed{ \rm \:\dfrac{1 + sinA - cosA}{1 + sinA + cosA}  =  \sqrt{\dfrac{1 - cosA}{1 + cosA} } }

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions