Answer the above file
Answers
Refer to the attachment for complete solution.
All Trigonometric Basic Formulas :-
- sin A = Perpendicular / Hypotenuse
- cos A = Base / Hypotenuse
- tan A = Perpendicular / base
- cosec A = Hypotenuse / Perpendicular
- cos A = Hypotenuse / base
- cot A = Base / Hypotenuse
- sec² A - tan² A = 1
- 1 + cot² A = cosec²A
- sin² A + cos² A = 1
- sin A = 1 / cosec A
- cos A = 1 / sec A
- tan A = 1 / cot A
- cosec A = 1 / sin A
- sec A = 1 / cos A
- cot A = 1 / tan A
- tan A = sin A / cos A
- tan A = sec A / cosec A
- cot A = cos A / sin A
- cot A = cosec A / cos A
- sin ( 90° - A ) = cos A
- cos ( 90° - A ) = sin A
- tan ( 90° - A ) = cot A
- cot ( 90° - A ) = tan A
- cosec ( 90° - A ) = sec A
- sec ( 90° - A ) = cos A
Some Commonly used identities :-
- ( A + B ) ( A - B ) = A² - B²
- ( A + B )² = A² + B² + 2 AB
- ( A - B )² = A² + B² - 2 Ab
- ( A + B + C)² = A² + B² + C² + 2 AB + 2 BC + 2 CA
- A = √[ ( A ) ²]
- √ A² = ± A
Prove that,
Consider LHS
can be rewritten as
On rationalizing the denominator, we get
We know,
So, using these Identities,
We know,
can be further rewritten as
Hence,
Additional Information:-
Relationship between sides and T ratios
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
Reciprocal Identities
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
Co-function Identities
sin (90°−x) = cos x
cos (90°−x) = sin x
tan (90°−x) = cot x
cot (90°−x) = tan x
sec (90°−x) = cosec x
cosec (90°−x) = sec x
Fundamental Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1