Math, asked by arulselvi14, 4 months ago

Answer the above one pls. (Spam answers = report) ​

Attachments:

Answers

Answered by ritaarjun335
1

Answer:

 \frac{ {x}^{2} }{6}  +  \frac{ {y}^{2} }{25} -  \frac{xy}{15}

Attachments:
Answered by LilBabe
121

Question

  \large\bf \:   \{\frac{x}{6} -  \frac{y}{5} \} {}^{2}

Expand the given equation

Answer

  \large\rm \:   \{\frac{x}{6} -  \frac{y}{5} \} {}^{2}

\rm\: Taking~a=\frac{x}{6}

\rm\: Taking~b=\frac{y}{5}

\rm\: Using~the~identity

\rm\: (a-b)²=a²+b²-2ab

\rm\: Substituting~the~value

\rm\: (\frac{x}{6}-\frac{y}{5})²=\frac{x}{6}²+\frac{y}{5}²-2\frac{x}{6}\frac{y}{5}

\rm\:( \frac{x}{6}-\frac{y}{5})²=\frac{x²}{36}+\frac{y²}{25}-2\frac{x}{6}\frac{y}{5}

\rm\: (\frac{x}{6}-\frac{y}{5})²=\frac{x²}{36}+\frac{y²}{25}-\cancel2\frac{x}{\cancel6}\frac{y}{5}

{\boxed{\bf\: (\frac{x}{6}-\frac{y}{5})²=\frac{x²}{36}+\frac{y²}{25}-\frac{xy}{15}}}

Basic formulas↓

 { \color{lightblue}{\boxed {\boxed {\begin{array}{c} \tt \: (a + b) {}^{2}  = a {}^{2}  + b {}^{2}  + 2ab\\ \:  \tt(a  - b) {}^{2}  = a {}^{2}    +  b {}^{2}   -  2ab\\ \:  \tt \:(a - b)(a + b) = a {}^{2}  - b {}^{2}  \: \end{array}}}}}

Similar questions