Math, asked by priyanshu34517, 5 months ago

answer the above pic
class 10 ​

Attachments:

Answers

Answered by TheEternity
25

Answer:

  • 44 \:  {m}^{2}
  • ₹22000

Step-by-step explanation:

Given :-

  • Height of cylindrical part = 2.1 m
  • Diameter of cylindrical part = 4m
  • Slant height of conical part = 2.8 m

To find :-

  • Canvas used for making tent.
  • Cost of canvas of tent at the rate of ₹500

Formula used :-

  • CSA \: of \: cylinder \:  = \:  2\pi \:  \: rh
  • CSA \: of \: cone \:  = \pi \: rl

Solution :-

 => \: radius \:  =  \frac{diameter}{2}  \\  =  > \: \frac{4}{2}  = 2m \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Required surface area =

CSA of cone + CSA of cylinder

=  >  \: \pi \: rl \:   + 2\pi \: rh

=  >  \: \pi \:  \: r(l + 2h)

=  >  \: \frac{22}{7}  \times 2 \times (2.8 + 2 \times 2.1)

=  >  \:  \frac{44}{7} (2.8 + 4.2)

=  >  \frac{44}{7}\times7 \: \\  =  > 44 \:  {m}^{2}

Cost of canvas of tent at the rate of ₹500 per metre square is =

 Therefore, \: 44 \times 500 = ₹22000

Attachments:
Answered by IIMidnightHunterII
26

\LARGE\textbf{\underline{\underline{Given  :-}}}

\large\texttt{↦ Height of the cylindrical shape = 2.1 m .  }\\\\\large\textsf{↦ Diameter of the cylindrical shape = 4 m .}\\\\\large\textsf{↦ Slant height of the cone shape = 2.8 m .}\\\\\large\textsf{↦ Rate of the canvas of the tent = ₹ 500 / m . }

\LARGE\textbf{\underline{\underline{To find  :-}}}

\large\textsf{↦ Total cost of the canvas of the tent = ?}

\LARGE\textbf{\underline{\underline{Formula :-}}}

\large: \: \Longrightarrow\underline{\boxed{\textsf\textcolor{green}{$ C.S.A _ { ( \: Cone \: )} = \pi r l $ }}}\\\\\large: \: \Longrightarrow\underline{\boxed{\textsf\textcolor{green}{$ C.S.A _ { ( \: Cylinder \: )}= 2 \pi r h $}}}

\LARGE\textbf{\underline{\underline{Method  :-}}}

  • First we have to find the C.S.A of the cone and C.S.A of the cylinder .

  • Then we have to add them together .

  • And then multiply the sum by the cost of per square meter .

  • * C.S.A. = Curved Surface Area .

\LARGE\textbf{\underline{\underline{Solution  :-}}}

\large\bigstar\textsf\textcolor{orange}{$ \: \: \: C.S.A _ { ( \: Cone \: )} = \cfrac{22}{7} × 2 × 2.8$ }\\\\\\\large: \: \Longrightarrow\textsf{= $\cfrac{22}{7} × 5.6$}\\\\\\\large: \: \Longrightarrow\textsf{= $\cancel\cfrac{22}{7} × \cancel{5.6}$}\\\\\\\large: \: \Longrightarrow\textsf{= 22 × 0.8}\\\\\\\large: \: \Longrightarrow\underline{\boxed{\textsf\textcolor{purple}{$ C.S.A _ { ( \: Cone \: )}= 17.6 m^{2}$}}}

\large\bigstar\textsf{\textcolor{orange}{$ \: \: \: C.S.A _ { ( \: Cylinder\: )} = 2 × \cfrac{22}{7} × 2 × 2.1$}}\\\\\\\large: \: \Longrightarrow\textsf{= $\cfrac{22}{7}× 8.4$}\\\\\\\large: \: \Longrightarrow\textsf{= $ \cancel\cfrac{22}{7}×\cancel{8.4}$}\\\\\\\large: \: \Longrightarrow\textsf{= 22 × 1.2 }\\\\\\\large: \: \Longrightarrow\underline{\boxed{\textsf\textcolor{purple}{$ C.S.A _ { ( \: Cylinder \: ) }= 26.4 m^{2}$}}}\\\\\\\bigstar\large\textsf\textcolor{orange}{$\: \: \:  C.S.A _ { ( \: Cone + Cylinder \: )} = 17.6m^{2} + 26.4^{2}$}\\\\\\\large: \: \Longrightarrow\underline{\boxed{\textsf\textcolor{purple}{= 44 m²}}}\\\\\\\bigstar\large\textsf\textcolor{orange}{\: \: \: Cost of the canvas = 44 × 500}\\\\\\\large: \: \Longrightarrow\underline{\boxed{\textsf\textcolor{purple}{= ₹ 22,000}}}

Attachments:
Similar questions