Answer the above question
Attachments:
Answers
Answered by
2
LHS=(cot^3∅.sin^3∅+tan^3∅.cos^3∅)/cos^2∅+sin^∅+2sin∅cos∅)
=(cot^3∅.sin^3∅+tan^3∅.cos^3∅)/(1+sin∅cos∅)
now,convert cot∅ and tan∅ in terms of cos and sin
={(cos^3∅/sin^3∅)×sin^3∅ +( sin^3∅/cos^3∅)×cos^3∅}/(1+ sin∅cos∅)
=(cos^3∅+sin^3∅)/(1+sin∅cos∅)
a3+b3=(a+b)(a^2+b^2-ab)
also,1+sin∅cos∅=(cos∅+sin∅)^2
(cos∅+sin∅)(cos^2∅+sin^∅-cos∅sin∅)/(cos∅+sin∅)^2
=(1-cos∅sin∅)/(sin∅+cos∅)
=(1-1/sec∅cosec∅)/{(sec∅+cosec∅)/sec∅cosec∅
sec∅cosec∅ will be cancelled out from both numerator. and denominator
we get
LHS=(sec∅cosec∅-1)/(sec∅+cosec∅)=RHS
hence proved
Similar questions