Math, asked by prachiiee000032, 2 months ago

Answer the above question

Attachments:

Answers

Answered by 20vibhishsubburaj7
0

Answer:I cant see the question

Step-by-step explanation:

Answered by Salmonpanna2022
7

Step-by-step explanation:

Given that:

 \frac{1}{x + 4}  -  \frac{1}{x - 7}  =  \frac{11}{30}  , \: x \:≠ - 4,7. \\  \\

To find:

Roots in the following equations.

Solution:

We have,

 \frac{1}{ x+ 4}  -  \frac{1}{x - 7}  =  \frac{11}{30}  \\  \\

 \longrightarrow \:  \frac{(x - 7) - (x + 4)}{(x - 7)(x + 4)}  =  \frac{11}{30}  \\  \\

 \longrightarrow \:  \frac{x - 7 - x - 4}{(x - 7)(x + 4)}  =  \frac{11}{30}  \\  \\

 \longrightarrow \:  \frac{ - 11}{(x - 7)(x + 4)}  =  \frac{11}{30}  \\  \\

 \longrightarrow \:  \frac{ - 1}{(x - 7)(x + 4)}  =  \frac{ 1}{30}  \\  \\

 \longrightarrow \: (x - 7)(x + 4) =  - 30 \\  \\

 \longrightarrow \:  {x}^{2}  - 7x + 4x - 28 =  - 30

 \longrightarrow \:  {x}^{2}  - 3x - 28 + 30 = 0 \\  \\

 \longrightarrow \:  {x}^{2}  - 3x + 2 = 0 \\  \\

 \longrightarrow \:  {x}^{2}  - (2 + 1)x + 2 = 0 \\  \\

 \longrightarrow \:  {x}^{2}  - 2x - 1x + 2 = 0 \\  \\

 \longrightarrow \: x(x - 2) - 1(x - 2) = 0 \\  \\

 \longrightarrow \: (x - 2)( x- 1) = 0 \\  \\

If \: x - 2 = 0 \: ,then \: x = 2 \\  \\

If \: x - 1 = 0 \: , \: then \: x = 1 \\  \\

x = 1,2

Therefore, according to the question we find roots are {1,2} Ans.

Similar questions