Math, asked by sujalrathod1234, 9 months ago

answer the above question give step vise explainetion​

Attachments:

Answers

Answered by RISH4BH
71

\large{\underline{\underline{\red{\tt{\purple{\leadsto } GiveN:-}}}}}

  • ❒ A rectangular playground has an area of 420m².
  • ❒ Its lenght is increased by 7m.
  • ❒ Its breadth is decreased by 5m.

\large{\underline{\underline{\red{\tt{\purple{\leadsto } To\:FinD:-}}}}}

  • ❒ The length and breadth of playground.

\large{\underline{\underline{\red{\tt{\purple{\leadsto } FormulA\:UseD:-}}}}}

\tt We \:can\:found\:area\:as

\large\orange{\underline{\boxed{\purple{\bf{\dag Area\:\:=\:\:lenght\:\times\:breadth }}}}}

\large{\underline{\underline{\red{\tt{\purple{\leadsto } AnsweR:-}}}}}

Here we will have two cases ,

\underline{\green{\tt \mapsto Case\:\:1:-}}

\sf Let\:us\:take\:the

  • ➳ Length be x .
  • ➳ Breadth be y .

\tt:\implies Area=length\times breadth

\tt:\implies Area=x\times y

\underline{\boxed{\red{\tt{\longmapsto \:\:xy\:\:=\:\:420m^2\:\:}}}}

________________________________________

\underline{\green{\tt \mapsto Case\:\:2:-}}

\sf Let\:us\:take\:the

  • ➳ Length be ( x + 7 ) m .
  • ➳ Breadth be ( y - 5 ) m.

\tt:\implies Area=length\times breadth

\tt:\implies Area=(x+7)\times( y-5)

\tt:\implies 420m^2=x(y-5)+7(y-5)

\tt:\implies xy - 5x + 7y - 35 = 420m^2

\tt:\implies \bigg( x\times \dfrac{420}{x}\bigg)-5x+\bigg(7\times\dfrac{420}{x}\bigg)-35=420

\tt:\implies \cancel{420}-5x+\dfrac{2940}{x}-35=\cancel{420}

\tt:\implies -5x^2+2940-35x=0

\tt:\implies 5x^2+35x-2940=0

\tt:\implies 5(x^2+7x-588)=0

\tt:\implies x^2+7x-588=0

\tt:\implies x^2+28x-21x-588=0

\tt:\implies x(x+28)-21(x+28)=0

\tt:\implies (x-21)(x+28)=0

\tt:\implies x = 21,(-28)

\tt Neglecting\: negative\:value\:since\:sides

\tt cannot\:be\; negative.

\underline{\boxed{\red{\tt{\longmapsto \:\:x\:\:=\:\:21\:\:}}}}

\blue{\bf Hence\: length\:and\: breadth\:are :}

  • \green{\boxed{\orange{\tt Length\:\:=\:\:x\:=\:\pink{21m}}}}

  • \green{\boxed{\orange{\tt Breadth\:\:=\:\:\dfrac{420}{x}\:=\:\bigg(\dfrac{\cancel{420m}}{\cancel{21m}}\bigg)\:=\:\pink{20m}}}}
Similar questions