English, asked by HOTMESS, 1 year ago

Answer the above question.

No spam ❎

Attachments:

Answers

Answered by itzdevilqueena
7

 \huge{ \underline{ \overline{ \mid{ \rm \pink{Answer - }} \mid}}}

 \underline{ \bold{Given - }}

Angles of depression of two ships on the opposite sides are  \alpha  \: and  \: \beta

And the height of lighthouse is h metres.

 \underline{ \bold{To \: Prove - }}The distance between the ships is  \frac{h( \tan \alpha  +  \tan \beta )  }{ \tan \alpha  \tan\beta  }

 \underline{ \bold{Proof - }}

For figure, refer to the above attachment.

Now, Let AB be the lighthouse and C and D be the positions of the two ships. Then AB =h metres.

Clearly,

 \angle ACB =  \alpha  \: and \angle ADB =  \beta

Let AC=x \: and \: AD = y

From right  \triangle CAB

 \frac{AC }{AB }  =  \cot \alpha  \implies \:  \frac{x}{h}  =  \cot\alpha  \\  \implies \: x = h \cot \alpha  \:  \:  \: ....(1)

From right  \triangle DAB

 \frac{AD }{AB }  =  \cot\beta  \implies \:  \frac{x}{h}  =  \cot\beta  \\  \implies \: y = h \cot\beta  \:  \:  \:  \: ......(2)

Adding the corresponding sides of (1)and (2),

x + y = h( \cot\alpha  +  \cot \beta ) \\   \implies \: x + y = h( \frac{1}{ \tan\alpha }  +  \frac{1}{ \tan\beta  } ) \\  \implies \: x + y =  \frac{h( \tan\alpha  +  \tan\beta ) }{ \tan\alpha  \tan \beta  }

Hence the distance between the ships is  \frac{h( \tan \alpha  +  \tan\beta ) }{ \tan\alpha  \tan\beta  }

Attachments:
Answered by HEAVENPRINCE
17

\huge\orange{\boxed{\bold{Solution}}}

________________________________________

Let AB be the lighthouse of height h metres.

Let AC = x and AD = y

In CAB,

 \frac{AB}{AC}  =  \tan( \alpha) \\  \\  \tan( \alpha )  =  \frac{h}{x}  \\  \\  =  > x  =  \frac{h}{ \tan( \alpha ) }

In DAB,

 \tan( \beta )  =  \frac{h}{y}  \\  \\ y =  \frac{h}{ \tan( \beta ) }

Distance between the ships = x + y

 = ( \frac{h}{ \tan( \alpha ) }  +  \frac{h}{ \tan( \beta ) } ) \\  \\ h \times( \frac{ \tan( \alpha ) + \tan( \beta ) }{ \tan( \alpha) +  \tan( \beta )} )

_________________________________________

[tex]\huge\mathbb\blue{THANK\:YUH!}[/tex]

Attachments:
Similar questions