answer the above question... plzz... it's urgent...
Answers
here's the solution....
Given : a sec Ф + b tan Ф + c = 0 ----- (1)
Given : p sec Ф + q tan Ф + r = 0 ------ (2)
(i)
On solving (1) * q & (2) * b, we get
⇒ aq sec Ф + bq tan Ф + cq = 0
⇒ bp sec Ф + bq tan Ф + rb = 0
--------------------------------------------
(aq - bp)secФ + cq - rq = 0
(aq - bp)secФ = rb - cq
secФ = (rb - cq)/aq - bp.
(ii)
On solving (1) * p & (2) * a, we get
⇒ ap sec Ф + bp tan Ф + cp = 0
⇒ ap sec Ф + aq tan Ф + ar = 0
-------------------------------------------
(bp - aq)tanФ + (cp - ar) = 0
tan Ф = (ar - cp)/bp - aq.
Now,
We know that Sec^2 Ф - tan^2 Ф = 1.
⇒ [rb - cq/aq - bp]^2 - [ar - cp/bp - aq]^2 = 1
⇒ [rb - cq/aq - bp]^2 - [cp - ar/aq - bp]^2 = 1
⇒ (rb - cq)^2 - (cp - ar)^2 = (aq - bp)^2
Therefore, the answer is (aq - bp)^2 - Option (B).
Hope this helps!