answer the above questions with proper explanation
Attachments:
Answers
Answered by
5
The answer is given below :
6.
Now,
3 + 2√2
= 1 + 2√2 + 2
= 1² + (2 × 1 × √2) + (√2)²
= (1 + √2)²
So, √(3 + 2√2) = ± (1 + √2)
7.
3 - 2√2
= 1 - 2√2 + 2
= 1² - (2 × 1 × √2) + (√2)²
= (1 - √2)²
So, √(3 - 2√2) = ± (1 - √2)
IDENTITY FORMULA :
(a + b)² = a² + 2ab + b²
(a - b)² = a² - 2ab + b²
Thank you for your question.
6.
Now,
3 + 2√2
= 1 + 2√2 + 2
= 1² + (2 × 1 × √2) + (√2)²
= (1 + √2)²
So, √(3 + 2√2) = ± (1 + √2)
7.
3 - 2√2
= 1 - 2√2 + 2
= 1² - (2 × 1 × √2) + (√2)²
= (1 - √2)²
So, √(3 - 2√2) = ± (1 - √2)
IDENTITY FORMULA :
(a + b)² = a² + 2ab + b²
(a - b)² = a² - 2ab + b²
Thank you for your question.
Anonymous:
isme whole root h
Answered by
3
Hey there!
Let us consider that,
√(3+2√2) = √x + √y
Squaring on both sides,
3 + 2√2 = x + y + 2√xy
x + y = 3 , √xy = 2 .
Now, (x - y)² = (x + y) ² - 4xy = 9 - 8 = 1
x - y = 1 .
So,
x + y = 3
x - y = 1
=========
2x = 4 , x =2
Now, y = 3 -2 =1 .
So finally, √(3+2√2) = √2 + √1 = 1 + √2
*******************************************************
Let us consider that,
√(3-2√2) = √x - √y
Squaring on both sides,
3 - 2√2 = x + y - 2√xy
x + y = 3 , √xy = 2 .
Now, (x - y)² = (x + y) ² - 4xy = 9 - 8 = 1
x - y = 1 .
So,
x + y = 3
x - y = 1
=========
2x = 4 , x =2
Now, y = 3 -2 =1 .
So finally, √(3- 2√2) = √2 - √1 = √2 - 1
Let us consider that,
√(3+2√2) = √x + √y
Squaring on both sides,
3 + 2√2 = x + y + 2√xy
x + y = 3 , √xy = 2 .
Now, (x - y)² = (x + y) ² - 4xy = 9 - 8 = 1
x - y = 1 .
So,
x + y = 3
x - y = 1
=========
2x = 4 , x =2
Now, y = 3 -2 =1 .
So finally, √(3+2√2) = √2 + √1 = 1 + √2
*******************************************************
Let us consider that,
√(3-2√2) = √x - √y
Squaring on both sides,
3 - 2√2 = x + y - 2√xy
x + y = 3 , √xy = 2 .
Now, (x - y)² = (x + y) ² - 4xy = 9 - 8 = 1
x - y = 1 .
So,
x + y = 3
x - y = 1
=========
2x = 4 , x =2
Now, y = 3 -2 =1 .
So finally, √(3- 2√2) = √2 - √1 = √2 - 1
Similar questions