Math, asked by yeseyi2484, 10 months ago

Answer the above THE BEST WILL GET BRAINLIEST
Note: if you randomly wrote anything you will be reported
PS: You will not get the answer in google so don't waste your time!!​

Attachments:

Answers

Answered by AdorableMe
43

GIVEN EXPRESSION :-

\sf{\dfrac{d}{dx}\bigg(\sqrt{x}+\dfrac{1}{\sqrt{x} }  \bigg)^2 }

OBJECTIVE :-

To differentiate the given expression.

SOLUTION :-

\sf{\dfrac{d}{dx}\bigg(\sqrt{x}+\dfrac{1}{\sqrt{x} }  \bigg)^2 }

Applying power rule :-

\displaystyle{\sf{= 2\bigg(\sqrt{x}+\frac{1}{\sqrt{x} } \bigg).\frac{d}{dx}\bigg(\sqrt{x}+\frac{1}{\sqrt{x} }\bigg)    }}

\displaystyle{\sf{= 2\bigg(\sqrt{x}+\frac{1}{\sqrt{x} }   \bigg)\bigg(\frac{d}{dx}(\sqrt{x} ) +\frac{d}{dx}(\frac{1}{\sqrt{x} } ) \bigg)}}

\displaystyle{\sf{= 2\bigg(\sqrt{x} + \frac{1}{\sqrt{x} }  \bigg)\bigg[\frac{1}{2}x^{\frac{1}{2}-1 }+\big(\frac{-1}{2}  \big)x^{\frac{-1}{2}-1 } \bigg]}}

\displaystyle{\sf{= 2\bigg(\frac{1}{2\sqrt{x} }-\frac{1}{2x^\frac{3}{2} } \bigg)\bigg( \sqrt{x} + \frac{1}{\sqrt{x} } \bigg) }}

On simplifying by taking LCM :-

\displaystyle{\sf{= \frac{x^2-1}{x^2} }}

Solving it :-

\displaystyle{\sf{\implies \frac{x^2-1}{x^2} }=\frac{x^2}{x^2}-\frac{1}{x^2}  }\\\\\boxed{\displaystyle{\sf{= 1-\frac{1}{x^2}  }}}

So, the answer is option (A).

Similar questions