Math, asked by sanju2363, 1 month ago

Answer the below Question !!

1)\tt { \:  \: if \: f(x) \:  =  \begin{cases}m {x}^{2}  + n,x < 0 \\ nx + m,0 \leqslant x \leqslant 1  \\  {nx}^{3} + m,x > 1 \end{cases}}
 \bf \: For  \:  \: what \:  \:  values \:  \:  of \:  \:  integers \:  \:  m \:  and  \: n  \: does \:  the \:  limits  \: \lim_{x \to0}  \: f(x)  \: and \:   \lim_{x \to 1}  \: f(x)  \: exist . \\
2)\tt \: if \: f(x) =  \begin{cases} |x|  + 1 ,\: x < 0 \\ 0 \:  \:  \:  \:  \:  \:  ,\: x = 0 \\  |x|  + 1 \: ,x > 0 \end{cases} \:  \:
 \bf \: For  \:  \: what values  \:  \: (s) \:  \:  of  \:  \underline{a} \:  \: does \:  \:  \lim_{x\to a}  \:  \: f(x) \:  \:  exist ?

Answers

Answered by BrainlyTornado
59

ANSWER 1:

  • (i) f(x) is valid when m = n for the limits x → 0

  • (ii) f(x) is valid for any value of m and n for the limits x → 1

\\ \\

GIVEN:

\tt {If \ f(x) = \begin{cases} \tt m {x}^{2} + n,x < 0 \\  \tt nx + m,0 \leqslant x \leqslant 1 \\ \tt {nx}^{3} + m,x > 1 \end{cases}}

\\ \\

TO FIND:

  • The values of m and n for the given cases.

\\ \\

EXPLANATION:

\tt {If \ f(x) = \begin{cases} \tt m {x}^{2} + n,x < 0 \\  \tt nx + m,0 \leqslant x \leqslant 1 \\ \tt {nx}^{3} + m,x > 1 \end{cases}} \\  \\  \\ \dashrightarrow \displaystyle\tt\lim_{x \to0} f(x) \ has \ L.H.L \ and \ R.H.L \\  \\  \\ \tt\dashrightarrow L.H.L \implies\displaystyle\tt\lim_{x \to{0}^{ - } } f(x) = m {x}^{2}  + n \\  \\  \\ \tt\dashrightarrow f(0) = m {(0)}^{2}  + n \\  \\  \\  \tt\dashrightarrow f(0) = n \\  \\  \\ \dashrightarrow \tt R.H.L \implies\displaystyle\tt\lim_{x \to{0}^{  +  } } f(x) = n {x}  + m \\  \\  \\ \tt\dashrightarrow f(0) = n {(0)}  + m\\  \\  \\  \tt\dashrightarrow f(0) = m \\  \\  \\  \tt\dashrightarrow Limit\ exists\ if \ L.H.L = R.H.L \\  \\  \\ \dashrightarrow \displaystyle\tt\lim_{x \to0} f(x) \ exists \ if \ m = n \\  \\  \\

\rule{200}{1}

 \displaystyle \tt\dashrightarrow \lim_{x \to1} f(x) \ has \ L.H.L\ and \ R.H.L \\  \\  \\ \displaystyle\tt\dashrightarrow L.H.L \implies\lim_{x \to{1}^{ - } } f(x) = nx + m \\  \\  \\ \dashrightarrow\tt f(0) = n {(1)}  + m \\  \\  \\  \dashrightarrow\tt f(1) = m + n \\  \\  \\ \dashrightarrow\tt R.H.L \implies\displaystyle\tt\lim_{x \to{1}^{ + } } f(x) = n{x}^{3}   + m \\  \\  \\ \dashrightarrow \tt f(1) = n {(1)}^{3}  + m\\  \\  \\  \tt f(0) = m + n \\  \\  \\ \dashrightarrow \tt Limit\ exists\ if \ L.H.L = R.H.L \\  \\  \\ \displaystyle\dashrightarrow \tt \lim_{x \to1} f(x) \ exists \ for \ any \ values \ of \ m \ and\ n.

\\ \\

ANSWER 2:

  • f(x) is valid when a ≠ 0 for the limits x → a,

\\ \\

GIVEN:

\tt If \ f(x) = \begin{cases} \tt |x| + 1 ,\: x < 0 \\  \tt0 \: \: \: \: \: \: ,\: x = 0 \\ \tt |x| + 1 \: ,x > 0 \end{cases}

\\ \\

TO FIND:

  • The values of a for the given case.

\\ \\

EXPLANATION:

 \tt If \ f(x) = \begin{cases} \tt |x| + 1 ,\: x < 0 \\  \tt0 \: \: \: \: \: \: ,\: x = 0 \\ \tt |x| + 1 \: ,x > 0 \end{cases} \\  \\  \\ \dashrightarrow \displaystyle\tt\lim_{x \to a} f(x) \ has \ L.H.L \ and \ R.H.L \\  \\  \\ \dashrightarrow\tt when\ a=0\\ \\ \\ \dashrightarrow\tt L.H.L \implies\displaystyle\tt\lim_{x \to{0}^{ - } } f(x) = |x| + 1 \\  \\  \\ \dashrightarrow\tt f(0) = 1\\  \\  \\ \dashrightarrow\tt R.H.L \implies\displaystyle\tt\lim_{x \to{0}^{  +  } } f(x) =|x|-1 \\  \\  \\ \dashrightarrow\tt f(0) = -1\\  \\  \\  \dashrightarrow\tt Limit\ exists\ if \ L.H.L = R.H.L \\  \\  \\ \dashrightarrow \tt L.H.L  \not= R.H.L\\  \\  \\ \dashrightarrow \displaystyle\tt \lim_{x \to a} f(x) \ doesnot\ exists \ if \ a = 0. \\  \\  \\ \dashrightarrow  \tt When \ a < 0 \ f(a) =  |a|  + 1 \ is \ continuous. \\  \tt \:so \ limit \ exists.  \\  \\  \\ \dashrightarrow\tt When \ a > 0\ f(a) =  |a|  - 1 \ is \ continuous. \\  \tt so \ limit \ exists. \\  \\  \\ \dashrightarrow\displaystyle\tt \lim_{x \to a} f(x) \ exists \ when \ a \ne 0


amansharma264: Excellent
Answered by MagicalLove
229

Step-by-step explanation:

_________________

_________________________

 { \underline{ \underline{ \bf{Question:}}}}

1)\tt { \: \: if \: f(x) \: = \begin{cases}m {x}^{2} + n,x < 0 \\ nx + m,0 \leqslant x \leqslant 1 \\ {nx}^{3} + m,x > 1 \end{cases}}

 \bf \: For \: \: what \: \: values \: \: of \: \: integers \: \: m \: and \: n \: does \: the \: limits \: \lim_{x \to0} \: f(x) \: and \: \lim_{x \to 1} \: f(x) \: exist . \\

{ \underline{ \underline{ \bf{Answer :}}}}

It is given that ,

{ \underline{ \boxed{ \pink{ \bf{\lim_{x\to 0}  \:  \: f(x) \:  and  \:  \: \lim_{x \to 1} \:  \:  f(x) \:  \:  both \:  \:  exist  \: }}}}}

 \iff \bf  \lim_{x \to \:  {0}^{ - } } \: f(x) =  \lim_{x \to \:  {0}^{ + }}  \: f(x) \: and \:  \: \lim_{x \to \:  {1}^{ - } } \: f(x) =  \lim_{x \to \:  {1}^{ + }} f(x)\\

 \iff \bf \: \lim_{h \to \: 0}f(0 - h) =  \lim_{h \to \: 0}f(0 + h) \:  \: and \:  \:  \lim_{h \to \: 0}f(1 + h) =  \lim_{h \to \: 0}f(1 + h) \\

 \iff \bf \:  \lim_{h \to \: 0} \: m {( - h)}^{2}  + n =  \lim_{h \to \: 0} \: n(h) + m \:  \: and \:  \lim_{h \to \: 0} \: n(1 - h) + m \:  =  \lim_{h \to \: 0}n( {1 +  {h})^{3} }  + m \\

 \iff \bf \: n = m \:  \: and \: n + m \:  = n + m \\

 \iff \bf \: m = n

{ \underline{\rm{ \blue{Hence , \:  \lim_{x\to 0}  \: f(x)  \: and  \: \lim_{x\to 1}  \: f(x) \:  both  \: sides  \: for  \:  n=m}}} }\\

________________

________________________

{  \underline{ \underline{ \bf{Question:}}}}

2)\tt \: if \: f(x) = \begin{cases} |x| + 1 ,\: x < 0 \\ 0 \: \: \: \: \: \: ,\: x = 0 \\ |x| + 1 \: ,x > 0 \end{cases} \: \:

\bf \: For \: \: what values \: \: (s) \: \: of \: \underline{a} \: \: does \: \: \lim_{x\to a} \: \: f(x) \: \: exist ? \\

{ \underline{ \underline{ \bf{Answer:}}}}

We have,

 \bf \: \:  \: f(x) = \begin{cases} |x| + 1 ,\: x < 0 \\ 0 \: \: \: \: \: \: ,\: x = 0 \\ |x| + 1 \: ,x > 0 \end{cases} \: \:

 \implies \:  \bf \: \: \: f(x) = \begin{cases}  - x + 1 ,\: x < 0 \\ 0 \: \: \: \: \: \: ,\: x = 0 \\ x+ 1 \: ,x > 0 \end{cases} \: \:

 \qquad \qquad \qquad \qquad \qquad\qquad \qquad \qquad \qquad \qquad \:  \bigg[\because |x| = \begin{cases}x,x>0 \\ -x,x<0 \end{cases} \bigg]

 \rm \: Clearly , \:  \: \lim_{x \to a} \:  f(x)  \: exist \:  for  \: all  \: a≠ 0.  \: So  \: let  \: us \:  see  \: whether  \: \lim_{x \to 0} \:  f(x)  \: exist  \: or  \: not . \\

we observe that,

\iff\bf \lim_{x \to 0^-} f(x) =  \lim_{x \to 0} f(0-h) = \lim_{h \to 0} -(-h) +1=1 \\

and,

\iff\bf \lim_{x\to 0^+} f(x) =\lim_{h \to 0} f(0+h)= \lim_{h \to 0} h-1=-1 \\

\underline{\boxed{\bf{\green{\therefore \lim_{x \to 0^-}f(x) ≠ \lim_{x \to 0^+} f(x)}}}}

So,

 \underline{ \rm{ \blue{\lim_{x \to 0} \:  f(x) \:  does \:  not  \: exist \: . \: Hence  \: \lim_{x \to a}  \: f(x)  \: exists \:  for  \: all  \: a≠0}}} \\

________________

________________________


mddilshad11ab: Great¶
Similar questions