Math, asked by shailjaraj663, 4 months ago

Answer the both question 5 nd 6​

Attachments:

Answers

Answered by ranjana1999rakshit
1

Answer:

for \: problem \: (5 )\ \ \: : given \: that \:  \sqrt{x}  -  \frac{1}{2}  = 3 \\  \:  \:  \:implies \:  \sqrt{x}  = 3 +  \frac{1}{2 }  \\ implies \:  \sqrt{x }  =  \frac{7}{2 }  \\ implies \: x =  \frac{49}{4}  \\ hence \: option \: (c) \: is \: correct

for \: problem(6) \:  \:  \:  {x}^{2}  - 5x + 6  \\ =  {x}^{2}  - (3 + 2)x + 6  \\ = {x}^{2}  - 3x  - 2x + 6 \\  = x(x - 3) - 2(x - 3) \\  = (x - 3)( x  - 2) \\ hence \: option \: (c) \: is \: correct

Answered by lalabindu03gmailcom
1

Answer:

5) c) 49

4

6) c) (x - 2)(x - 3)

6) {x}^{2}  - 5x + 6 = 0 \\   {x}^{2}  - 2x - 3x + 6 = 0 \\  x(x - 2) - 3(x - 2) = 0 \\ (x - 2)(x - 3) = 0 \\ therefore \: c)(x - 2)(x - 3) \: is \: the \: correct \: option

5)   \sqrt{x}  -  \frac{1}{2}  = 3 \\  \sqrt{x}  = 3 +  \frac{1}{2}  \\  \sqrt{x}  =  \frac{6 + 1}{2} \\  \sqrt{x}  =  \frac{7}{2} \\ squaring \: on \: both \: side \: we \: get \\ x =  \frac{49}{4} \\ therefore \:c) \frac{49}{4}is \: the \: correct \: option

Hope it helps you....

Similar questions