Answer the differentiation question
Attachments:
Answers
Answered by
0
f(x)=sin(x)cos(x)g(x)=csc(x)f(x)=sin(x)cos(x)g(x)=csc(x)
y=5f(x)+4g(x)y=5f(x)+4g(x)//substitution
dydx=5f′(x)+4g′(x)dydx=5f′(x)+4g′(x) //sum of derivatives
f′(x)=(cos(x))cos(x)+sin(x)(−sin(x))f′(x)=(cos(x))cos(x)+sin(x)(−sin(x))// product rule
=cos2(x)−sin2(x)=cos2(x)−sin2(x)//simplify
g′(x)=−csc(x)cot(x)g′(x)=−csc(x)cot(x) // memory
→dydx=5(sin2(x)−cos2(x))−4csc(x)cot(x)
→dydx=5(sin2(x)−cos2(x))−4csc(x)cot(x)// final answer
y=5f(x)+4g(x)y=5f(x)+4g(x)//substitution
dydx=5f′(x)+4g′(x)dydx=5f′(x)+4g′(x) //sum of derivatives
f′(x)=(cos(x))cos(x)+sin(x)(−sin(x))f′(x)=(cos(x))cos(x)+sin(x)(−sin(x))// product rule
=cos2(x)−sin2(x)=cos2(x)−sin2(x)//simplify
g′(x)=−csc(x)cot(x)g′(x)=−csc(x)cot(x) // memory
→dydx=5(sin2(x)−cos2(x))−4csc(x)cot(x)
→dydx=5(sin2(x)−cos2(x))−4csc(x)cot(x)// final answer
Similar questions