Physics, asked by umeshmendpara, 10 months ago

Answer the following.

1. Derive the equation

a. v = u+at

b. s= ut+1/2at2

C. V2=u2+2as​

Answers

Answered by binduyadav2710
3

i hope it helps u buddy!!!

i hope it helps u buddy!!!plz mark it as brainliest

Attachments:
Answered by sourya1794
21

{\bold{\huge{\blue{\underline{\red{An}\pink{sw}\green{er}\purple{:-}}}}}}

Let a body moves in a straight path with initial velocity u.

Let the acceleration of body be a

V be the velocity of the body of the time t.

Now,

\bf\boxed\star\red{\underline{\underline{{For\:first\:equation\:of\: motion}}}}

Slopes of velocity time graph gives acceleration.

Therefore,

Slope of AB = tan θ = \bf\dfrac{BC}{AC}

\bf\:a=\dfrac{v-u}{t}

\bf\:v=at+u

\bf\orange{{\therefore\:v=u+at}}

\bf\boxed\star\pink{\underline{\underline{{For\:second\:equation\:of\: motion}}}}

Displacement= Area of velocity time graph with time axis

Displacement= Area of rectangle OACM + area of ∆ABC

\bf\:s=OA\times\:OM+\dfrac{1}{2}\times\:AC\times\:BC

\bf\:s=u\times\:t+\dfrac{1}{2}\times\:t\times\:(v-u)

\bf\:s=ut+\dfrac{1}{2}\times\:t\times\:(u+at-u)

\bf\pink{{s=ut+\dfrac{1}{2}a{t}^{2}}}

\bf\boxed\star\green{\underline{\underline{{For\:Third\:equation\:of\: motion}}}}

Displacement= Area of trapezium OABM

\bf\:s=\dfrac{1}{2}(OA+BM)\times\:OM

\bf\:s=\dfrac{1}{2}(u+v)\times\:t

\bf\:s=\dfrac{1}{2}\:(u+v)\times\:\dfrac{v-u}{a}

\bf\:2as=(v+u)\:(v-u)

\bf\:2as={v}^{2}-{u}^{2}

\bf\:{u}^{2}+2as={v}^{2}

\bf\blue{{\therefore{v}^{2}={u}^{2}+2as}}

\bf\:t=\dfrac{v-u}{a} comes from here,

\bf\:v=u+at

\bf\:v-u=at

\bf\:at=v-u

\bf\:t=\dfrac{v-u}{a}

Attachments:
Similar questions