Math, asked by sadaf9689, 9 months ago

Answer the following question
1)If alpha & beta are the roots of x square -2x +5 equal to zero find the value of alpha by beta + beta by alpha?
solve this fast ヘ(^_^)ヘ​

Answers

Answered by silentlover45
39

\underline\mathfrak{Given:-}

  • A quadratic equations have two roots alpha and beta.

\underline\mathfrak{To \: \: Find:-}

  • Find the alpha/beta + beta/alpha ...?

\underline\mathfrak{Solutions:-}

  • The equation is in the form of:-

x² - 2x + 5 = 0

  • a = 1
  • b = -2
  • c = 5

\: \: \: \: \: \therefore {Sum \: \: of \: \: zeroes} \: \: = \: \: \frac{ \: - \: coefficient \: \: of \: \: x}{coefficient \: \: of \: \: {x}^{2}}

\: \: \: \: \: \leadsto \: \:  \alpha \: \: + \: \beta \: \: = \: \: - \: \frac{(-2)}{1}

\: \: \: \: \: \leadsto \: \:  \alpha \: \: + \: \beta \: \: = \: \: {2} \: \: \: \: \: ....{(i)}.

\: \: \: \: \: \therefore {Product \: \: of \: \: zeroes} \: \: = \: \: \frac{constant \: \: term}{coefficient \: \: of \: \: {x}^{2}}

\: \: \: \: \: \leadsto \: \: \alpha\beta  \: \: = \: \: \frac{5}{1}

\: \: \: \: \: \leadsto \: \: \alpha\beta  \: \: = \: \: {5} \: \: \: \: .....{(ii)}.

Now,

\: \: \: \: \: \leadsto \: \:  \frac{\alpha}{\beta} \: + \: \frac{\beta}{\alpha}

\: \: \: \: \: \leadsto \: \:  \frac{{\alpha}^{2} \: + \: {\beta}^{2}}{\alpha\beta}

\: \: \: \: \: \leadsto \: \:  \frac{{({\alpha} \: + \: {\beta})}^{2} \: - \: {{2} \: \alpha\beta}}{\alpha\beta} \: \: \: \: \: {[{(a + b)}^{2} \: \: = \: \: {a}^{2} \: + \: {b}^{2} \: + \: {2} \: \alpha\beta]}

Now, using Eq. (i) and Eq. (ii).

\: \: \: \: \: \leadsto \: \:  \frac{{(2)}^{2} \: - \: {2} \: \times \: {5}}{5}

\: \: \: \: \: \leadsto \: \:  \frac{{4} \: - \: {10}}{5}

\: \: \: \: \: \leadsto \: \:  \frac{-6}{5}

Hence,

\: \: \: \: \: \leadsto \: \:  \frac{\alpha}{\beta} \: + \: \frac{\beta}{\alpha} \: \: = \: \: \frac{-6}{5}

Answered by rocky200216
14

\large\mathcal{\green{\underbrace{\orange{SOLUTION:-}}}}

GIVEN :-

✍️ \rm{\red{\alpha}\:and\:\red{\beta}\:} are the roots of ‘x² - 2x + 5 = 0’ .

TO FIND :-

  • The value of ‘\rm{\red{\dfrac{\alpha}{\beta}\:+\:\dfrac{\beta}{\alpha}\:}}’ .

CALCULATION :-

\checkmark\rm{\purple{Sum\:of\:zeros\:=\:\dfrac{-\:coefficient\:of\:x}{coefficient\:of\:x^2}\:}}

✍️ Here,

  • coefficient of x = -2

  • coefficient of = 1

  • constant term = 5

\rm{\implies\:\alpha\:+\:\beta\:=\:\dfrac{-(-2)}{1}\:}

\rm{\red{\implies\:\alpha\:+\:\beta\:=\:2\:}}

\checkmark\:\rm{\purple{Product\:of\:zeros\:=\:\dfrac{constant\:term}{coefficient\:of\:x^2}\:}}

\rm{\implies\:\alpha\:\beta\:=\:\dfrac{5}{1}\:}

\rm{\red{\implies\:\alpha\:\beta\:=\:5\:}}

✍️ Now, the value of ‘ \rm{\dfrac{\alpha}{\beta}\:+\:\dfrac{\beta}{\alpha}\:} ’ .

\rm{=\:\dfrac{\alpha^{2}\:+\:\beta^{2}}{\alpha\:\beta}\:}

\rm{=\:\dfrac{(\alpha\:+\:\beta)^2\:-\:2\alpha\beta}{\alpha\beta}\:}

\rm{=\:\dfrac{2^2\:-\:2\times{5}}{5}\:}

\rm{=\:\dfrac{4\:-\:10}{5}\:}

\rm{=\:\dfrac{-6}{5}\:}

\bigstar\:\rm{\blue{\boxed{\dfrac{\alpha}{\beta}\:+\:\dfrac{\beta}{\alpha}\:=\:\dfrac{-6}{5}\:}}}

Similar questions