Math, asked by Amaan54872, 6 months ago

Answer the following Question. ​

Attachments:

Answers

Answered by shadowsabers03
6

In the figure A is the point a metre above the lake, and B is horizontally d metre away from A. The cloud is at point C which is x metre vertically above B, so that the cloud is at a+x metre above the lake. Probably its reflection will be at

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\put(0,0){\line(1,0){60}}\multiput(0,-30)(8,0){8}{\line(1,0){4}}\multiput(60,30)(0,-60){2}{\circle*{2}}\multiput(0,10)(60,0){2}{\put(-1,-0.5){$a$}\put(0,3){\vector(0,1){7}}\put(0,-3){\vector(0,-1){7}}}\put(60,27){\vector(0,1){3}}\put(60,23){\vector(0,-1){3}}\put(58.8,24){$x$}\put(0,20){\line(6,1){60}}\put(0,20){\line(1,0){60}}\put(0,20){\line(6,-5){60}}\put(55.25,-16){$a+x$}\put(60,-12){\vector(0,1){12}}\put(60,-18){\vector(0,-1){12}}\multiput(0,0)(2,0){31}{\qbezier(0,0)(-0.5,-0.5)(-1,-1)}\qbezier(15,20)(15,21)(14.5,22.2)\qbezier(5.5,20)(5.5,18)(3.75,17)\put(17.5,20.75){$\alpha$}\put(6.75,16){$\beta$}\put(-5,20){$A$}\put(62,20){$B$}\put(62,30){$C$}\put(62,-30){$D$}\put(30,15){$d$}\end{picture}

From triangle ABC,

\longrightarrow\tan\alpha=\dfrac{x}{d}

\longrightarrow d=\dfrac{x}{\tan\alpha}\quad\quad\dots(1)

From triangle ABD,

\longrightarrow\tan\beta=\dfrac{2a+x}{d}

\longrightarrow d=\dfrac{2a+x}{\tan\beta}\quad\quad\dots(2)

From (1) and (2),

\longrightarrow\dfrac{x}{\tan\alpha}=\dfrac{2a+x}{\tan\beta}

\longrightarrow\dfrac{\tan\beta}{\tan\alpha}=\dfrac{2a+x}{x}

Subtracting 1,

\longrightarrow\dfrac{\tan\beta}{\tan\alpha}-1=\dfrac{2a+x}{x}-1

\longrightarrow\dfrac{\tan\beta-\tan\alpha}{\tan\alpha}=\dfrac{2a}{x}

\longrightarrow x=\dfrac{2a\tan\alpha}{\tan\beta-\tan\alpha}

Hence the height of the cloud in metre is,

\longrightarrow h=a+x

\longrightarrow h=a+\dfrac{2a\tan\alpha}{\tan\beta-\tan\alpha}

\longrightarrow h=\dfrac{a\tan\alpha+a\tan\beta}{\tan\beta-\tan\alpha}

\longrightarrow h=\dfrac{\left(\dfrac{a\sin\alpha}{\cos\alpha}+\dfrac{a\sin\beta}{\cos\beta}\right)}{\left(\dfrac{\sin\beta}{\cos\beta}-\dfrac{\sin\alpha}{\cos\alpha}\right)}

\longrightarrow h=\dfrac{\left(\dfrac{a\sin\alpha\cos\beta+a\cos\alpha\sin\beta}{\cos\alpha\cos\beta}\right)}{\left(\dfrac{\sin\beta\cos\alpha-\cos\beta\sin\alpha}{\cos\alpha\cos\beta}\right)}

\longrightarrow h=\dfrac{a(\sin\alpha\cos\beta+\cos\alpha\sin\beta)}{\sin\beta\cos\alpha-\cos\beta\sin\alpha}

\longrightarrow\underline{\underline{h=\dfrac{a\sin(\alpha+\beta)}{\sin(\beta-\alpha)}}}

Hence (2) is the answer.


PsychoUnicorn: Amazing work! :D
Answered by Anonymous
1

Step-by-step explanation:

here is the answer to your questions

options 2 is the correct answer to your questions

Similar questions