Math, asked by aayushi7532, 1 year ago

answer the following question

Attachments:

Answers

Answered by littyissacpe8b60
1

First draw trianle ABC, as BC as base. and AD is perpendicular to BC,  likewise AE perpendicular to side BC and BF perpendicular to side AC

I can't draw here. So follow the instruction


Slope of side AB =         1  -  ⁻2    =  ⁻ 3

                                1  - 2

The altitude CD is perpendicular toside AB

slope of CD =            1               =         1      

                          slope of AB              ⁻ 3

The altitude CD passes through C ( -1, 0) using slope form of the equation of a line, so

equation of CD =  Y - 0  = -1/3 (x - ⁻ 1)  

                         =   y - 0 =   ⁻ x/3  - 1/3

                        = 3y  = -x - 1

                        =  x + 3y + 1  = 0

This is the required equation of the altitude from C to AB.


The slope of BC =       0  -  1    =     1  

                                    ⁻ 1 - 1             2


The altitude AE is perpendicular to side BC, so

the slope AE =               1              =       1      = 2

                            Slope of BC              1/2


The altitude CD passes through A ( 2, -2) using slope form of the equation of a line, so

equation of CD =  Y - ⁻ 2  = 2 (x - 2)  

                           =   y + 2 =   2x  - 4

                          = 2x - y  - 2 = 0

This is the required equation of the altitude from A to BC.


The slope of AC =       0  -  2    =     2  

                                    ⁻ 1 - 2             3


The altitude BF is perpendicular to side AC, so

the slope BF =               1              =       1      =     3    

                            Slope of aC              2/3             2


The altitude CD passes through B ( 1, 1) using slope form of the equation of a line, so

equation of CD =  Y - 1  = 3/2 (x - 1)  

                           =   2y -2 =   3x  - 3

                          = 3x - 2y  - 1 = 0

This is the required equation of the altitude from B to AC.


Similar questions