Answer the following question. The correct answer will be marked brainliest. Pls no spam.
Attachments:
Answers
Answered by
2
ANSWER
cotAcosA/cotA+cosA
=[(cosA/sinA)cosA]/[(cosA/sinA)+cosA]
=(cos²A/sinA)/[(cosA+sinAcosA)/sinA]
=cos²A/cosA(1+sinA)
=cosA/(1+sinA)
=[cosA(1-sinA)]/[(1+sinA)(1-sinA)]
[multiplying the numerator and the denominator with (1-sinA)]
=[cosA(1-sinA)]/(1-sin²A)
=(cosA-cosAsinA)/cos²A
=[(cosA-cosAsinA)/sinA]/(cos²A/sinA)
[dividing the numerator and the denominator by sinA]
=[(cosA/sinA)-(cosAsinA/sinA)]/(cosA/sinA)cosA
=(cotA-cosA)/cotAcosA (Proved)
I HOPE THIS INFO HELPS U ☺️☺️☺️☺️☺️
cotAcosA/cotA+cosA
=[(cosA/sinA)cosA]/[(cosA/sinA)+cosA]
=(cos²A/sinA)/[(cosA+sinAcosA)/sinA]
=cos²A/cosA(1+sinA)
=cosA/(1+sinA)
=[cosA(1-sinA)]/[(1+sinA)(1-sinA)]
[multiplying the numerator and the denominator with (1-sinA)]
=[cosA(1-sinA)]/(1-sin²A)
=(cosA-cosAsinA)/cos²A
=[(cosA-cosAsinA)/sinA]/(cos²A/sinA)
[dividing the numerator and the denominator by sinA]
=[(cosA/sinA)-(cosAsinA/sinA)]/(cosA/sinA)cosA
=(cotA-cosA)/cotAcosA (Proved)
I HOPE THIS INFO HELPS U ☺️☺️☺️☺️☺️
TEJ1977:
yes
Answered by
2
L.H.S
cot A cos A / cot A + cos A
Use cot A = cos A / sin A
⇒ ( ( cos A / sin A ) cos A ) / ( ( cos A / sin A)+ cos A )
⇒ ( cos² A/sin A) / ( ( cos A + sin A cos A) / sin A )
Cancel sin A
⇒ cos²A / cos A ( 1 + sin A )
R.H.S
⇒ ( cot A - cos A ) / ( cot A cos A )
⇒ ( cos A / sin A - cos A ) / ( cos² A / sin A )
⇒ ( cos A - sin A cos A ) / sin A / cos² A / sin A
⇒ ( cos A - sin A cos A ) / cos² A
⇒ cos A ( 1 - sin A ) / cos² A
⇒ ( 1 - sin A ) / cos A
⇒ ( 1 - sin A )( 1 + sin A ) / cos A ( 1 + sin A )
⇒ ( 1 - sin²A ) / cos A ( 1 + sin A )
⇒ cos² A / cos A ( 1 + sin A )
L.H.S = R.H.S [ Proved ]
Similar questions
English,
6 months ago
English,
6 months ago
English,
6 months ago
Computer Science,
1 year ago
English,
1 year ago