Biology, asked by sandhya849092, 10 months ago

Answer the following questions:

(a) Why does a paramagnetic sample display greater magnetisation (for the same

magnetising field) when cooled?

(b) Why is diamagnetism, in contrast, almost independent of temperature?

(c) If a toroid uses bismuth for its core, will the field in the core be (slightly) greater or

(slightly) less than when the core is empty?

(d) Is the permeability of a ferromagnetic material independent of the magnetic field? If

not, is it more for lower or higher fields?

(e) Magnetic field lines are always nearly normal to the surface of a ferromagnet at every

point. (This fact is analogous to the static electric field lines being normal to the

surface of a conductor at every point.) Why?

(f) Would the maximum possible magnetisation of a paramagnetic sample be of the same

order of magnitude as the magnetization of a ferromagnet?​

Answers

Answered by Anonymous
1

\large\boxed{\fcolorbox{blue}{red}{Answer:-}}

☞Answers

(a) Owing to the random thermal motion of molecules, the alignments of dipoles get

disrupted at high temperatures. On cooling, this disruption is reduced. Hence, a paramagnetic sample displays greater magnetisation when cooled.

(b) The induced dipole moment in a diamagnetic substance is always opposite to the magnetising field. Hence, the internal motion of the atoms (which is related to the temperature) does not affect the diamagnetism of a material.

(c) Bismuth is a diamagnetic substance. Hence, a toroid with a bismuth core has a magnetic field slightly greater than a toroid whose core is empty.

(d) The permeability of ferromagnetic materials is not independent of the applied magnetic field. It is greater for a lower field and vice versa.

(e) The permeability of a ferromagnetic material is not less than one. It is always greater

than one. Hence, magnetic field lines are always nearly normal to the surface of such materials at every point.

(f) The maximum possible magnetisation of a paramagnetic sample can be of the sameorder of magnitude as the magnetisation of a ferromagnet. This requires high magnetising

fields for saturation.

\rule{200}{2}

Answered by subhra9178
0

Answer:

Plz mark as the brainliest

Explanation:

(a) Owing to the random thermal motion of molecules, the alignments of dipoles get disrupted at high temperatures. On cooling, this disruption is reduced. Hence, a paramagnetic sample displays greater magnetisation when cooled. (b) The induced dipole moment in a diamagnetic substance is always opposite to the magnetising field. Hence, the internal motion of the atoms (which is related to the temperature) does not affect the diamagnetism of a material. (c) Bismuth is a diamagnetic substance. Hence, a toroid with a bismuth core has a magnetic field slightly greater than a toroid whose core is empty. (d) The permeability of ferromagnetic materials is not independent of the applied magnetic field. It is greater for a lower field and vice versa. (e) The permeability of a ferromagnetic material is not less than one. It is always greater than one. Hence, magnetic field lines are always nearly normal to the surface of such materials at every point. (f) The maximum possible magnetisation of a paramagnetic sample can be of the same order of magnitude as the magnetisation of a ferromagnet. This requires high magnetising fields for saturation.

Similar questions