Math, asked by Anonymous, 8 months ago

Answer the following questions below

Attachments:

Answers

Answered by Isighting12
0

Answer:

a)   (a^{2}b)^{3} * \frac{a^{4}b}{(ab^{3})^{-1}}

= a^{6}b^{3} * \frac{a^{4}b}{\frac{1}{ab^{3}}}                 ............(x^{-z})=\frac{1}{x^{z}}

= a^{6}b^{3} * a^{4}b*ab^{3}\\\\

=(a^{6+1+4})(b^{3+1+3})                   ............... x^{m}*x^{n}=x^{m+n}

=a^{11}b^{7}

b)   (ab^{3})^{0}

=a^{0}b^{-3 * 0}

=a^{0}b^{0}

= 1                        ................ x^{0} =1

c)   \frac{x^{5}y^{-3}}{(x^{2}y^{2})^{2}} * (\frac{1}{xy^{2}})^{-1}

=\frac{\frac{x^{5}}{y^{3}}}{x^{4}y^{4}}*xy^{2}                  .............. (a^{-c})=\frac{1}{a^{c}}

=\frac{x^{5}}{y^{3} * x^{4}y^{4}}*xy^{2}

=\frac{(x^{5+1})y}{(y^{3+4})x^{4}}                 ................ a^{m}*a^{n}=a^{m+n}

=\frac{x^{6}y}{y^{7}x^{4}}

=(x^{6-4})(y^{1-7})                 ................ \frac{a^{m}}{a^{n}}=a^{m-n}

=\frac{x^{2}}{y^{6}}                            .................. (a^{-c})=\frac{1}{a^{c}}\\

d)  \frac{8m^{2}n}{9m^{-3}n^{2}} ÷ \frac{16m^{3}n^{-1}}{3m^{4}n}

= \frac{8m^{2}n}{\frac{9n^{2}}{m^{3}}} ÷  \frac{\frac{16m^{3}}{n}}{3m^{4}n}                 ................... (a^{-c})=\frac{1}{a^{c}}\\

= \frac{8m^{2}n*m^{3}}{9n^{2}} ÷ \frac{16m^{3}}{3m^{4}n*n}

=\frac{8(m^{2+3})n}{9n^{2}} ÷ \frac{16m^{3}}{3m^{4}(n^{1+1})}         ....................... a^{m}*a^{n}=a^{m+n}

=\frac{8m^{5}n}{9n^{2}} ÷ \frac{16m^{3}}{3m^{4}n^{2}}

=\frac{8m^{5}(n^{1-2})}{9}  ÷  \frac{16(m^{3-4})}{3n^{2}}                  ................... \frac{a^{m}}{a^{n}}=a^{m-n}

=\frac{8m^{5}(n^{-1})}{9} ÷ \frac{16(m^{-1})}{3n^{2}}

=\frac{8m^{5}}{9n} ÷  \frac{16}{3n^{2}m}                           ................. (a^{-c})=\frac{1}{a^{c}}\\

=\frac{8m^{5}}{9n}*\frac{3n^{2}m}{16}

=\frac{(m^{5+1})(n^{2-1})}{3*2}                      ................ a^{m}*a^{n}=a^{m+n}  &  \frac{a^{m}}{a^{n}}=a^{m-n}

=\frac{m^{6}n}{6}

yrrr it is a lot of efforts to type all this ............. remaining ones isse tareeke se honge please  try it yourself

Similar questions