Math, asked by Anonymous, 1 month ago

Answer the given question in the attachment

.correct answer needed with explanation​

Attachments:

Answers

Answered by 12thpáìn
211

Step by step explanation

\\\sf\dashrightarrow \left(\dfrac{3}{5}\right)^{x} \left(\dfrac{5}{3}\right)^{2x} =\dfrac{125}{27} \\

\\\sf \dashrightarrow\left(\dfrac{5}{3}\right)^{ - x}  \times \left(\dfrac{5}{3}\right)^{2x}   = \left(\dfrac{5}{3}  \right) ^{3}\\

On Comparing Both side:

\\\dashrightarrow \sf{ - x + 2x = 3}

\\\dashrightarrow\sf{ x = 3}\\

Laws of Exponents

  • \begin{gathered}\begin{gathered}~~~~\begin{gathered}\sf {a}^{m} \times {a}^{n} = {a}^{m + n} \: \: \: \: \: \: \: \: \: \: \sf {a}^{m} \div {a}^{n} = {a}^{m - n} \\ \sf{( {a}^{m} ) ^{n} = {a}^{mn} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: a {}^{m} \times {n}^{m} = (ab) ^{m} } \\ \sf{a}^{0} = 1 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: {\frac{ {a}^{m} }{ {b}^{m} }= \left( \frac{a}{b} \right) ^{m} }\\\\\end{gathered}\end{gathered}\end{gathered}
Answered by Anonymous
3

Answer:

Answer

i. 5√3 + 8√3

5√3 + 8√3 = (5 + 8)√3

⇒ 5√3 + 8√3 = 13√3

ii. 9√5 – 4√5 + √125

9√5 – 4√5 + √125 = 9√5 – 4√5 + √(5 × 5 × 5)

⇒ 9√5 – 4√5 + √125 = 9√5 – 4√5 + √(5 × 5 × 5)

⇒ 9√5 – 4√5 + √125 = 9√5 – 4√5 + 5√5

⇒ 9√5 – 4√5 + √125 = (9 – 4 + 5)√5

⇒ 9√5 – 4√5 + √125 = 10√5

iii. 7√48 – √27 – √3

7√48 – √27 – √3 = 7√(2 × 2 × 2 × 2 × 3) – √(3 × 3 × 3) – √3

⇒ 7√48 – √27 – √3 = 7×4√3 – 3√3 – √3

⇒ 7√48 – √27 – √3 = 28√3 – 3√3 – √3

⇒ 7√48 – √27 – √3 = (28 – 3 – 1)√3

⇒ 7√48 – √27 – √3 = 24√3

Attachments:
Similar questions