Math, asked by Anonymous, 1 year ago

Answer the question

Attachments:

Answers

Answered by anshi60
5

step by step explanation:

trigonometry;

we have to prove :

 \frac{1 +  \sec( \alpha )  -  \tan( \alpha ) }{1 +  \sec( \alpha )  +  \tan( \alpha ) }  =  \frac{1 -  \sin( \alpha ) }{ \cos( \alpha ) }

LHS

 =  \frac{1 + ( \sec( \alpha )  -  \tan( \alpha ) ) }{1 + ( \sec( \alpha ) +  \tan( \alpha ) ) }

we know that

 \sec {}^{2} ( \alpha )  -  \tan {}^{2} ( \alpha )  = 1

then ,

LHS

 =  \frac{( \sec( \alpha )  -  \tan( \alpha ) )( \sec {}^{2}  ( \alpha )   - \tan {}^{2} ( \alpha ) )}{1 +  \sec( \alpha )   - \tan( \alpha ) }

[ use( a+b) ( a-b) = a^2 - b^2]

 =  \frac{( \sec  ( \alpha )   - \tan( \alpha ) )(1 +  \sec( \alpha )  + \tan( \alpha ) ) }{1 +   \sec( \alpha )  + \tan( \alpha ) }

 =   \sec( \alpha )   -  \tan( \alpha )

 =  \frac{1}{ \cos( \alpha ) }  -  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }

 =  \frac{1 -   \sin( \alpha ) }{ \cos( \alpha ) }

 = rhs

I hope it helps you

Answered by Bᴇʏᴏɴᴅᴇʀ
10

ANSWER:-

To Prove :

\frac{1 + \sec( \alpha ) - \tan( \alpha ) }{1 + \sec( \alpha ) + \tan( \alpha ) } = \frac{1 - \sin( \alpha ) }{ \cos( \alpha ) }

SOLUTION:-

• LHS

=\frac{1 + ( \sec( \alpha ) - \tan( \alpha ) ) }{1 + ( \sec( \alpha ) + \tan( \alpha ) ) }

As we know:-

\sec {}^{2} ( \alpha ) - \tan {}^{2} ( \alpha )= 1

Therefore ,

LHS

= \frac{( \sec( \alpha ) - \tan( \alpha ) )( \sec {}^{2} ( \alpha ) - \tan {}^{2} ( \alpha ) )}{1 + \sec( \alpha ) - \tan( \alpha ) }

We know:-

\boxed{\bf{( a+b) ( a-b) = a^2 - b^2}}

= \frac{( \sec ( \alpha ) - \tan( \alpha ) )(1 + \sec( \alpha ) + \tan( \alpha ) ) }{1 + \sec( \alpha ) + \tan( \alpha ) }

= \sec( \alpha ) - \tan( \alpha )

= \frac{1}{ \cos( \alpha ) } - \frac{ \sin( \alpha ) }{ \cos( \alpha ) }

= \frac{1 - \sin( \alpha ) }{ \cos( \alpha ) }

• RHS:-

= \frac{1 - \sin( \alpha ) }{ \cos( \alpha ) }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

L.H.S = R.H.S

Hence Proved ✅

Similar questions