Math, asked by Anonymous, 1 year ago

Answer the question......​

Attachments:

Answers

Answered by Anonymous
6

SOLUTION:-

CASE 1:

Take L.H.S

 \frac{1 +  {tan}^{2}A }{1 + {cot}^{2} A}   \\  \\ = >   \frac{1 +  \frac{ {sin}^{2} A}{ {cos}^{2}A} }{1 +  \frac{ {cos}^{2} A}{ {sin}^{2} A} }  \\  \\  =  >  \frac{ \frac{ \frac{ {cos}^{2} A +  {sin}^{2} A}{ {cos}^{2} A} }{ {sin}^{2}A +  {cos}^{2}A  } }{ {sin}^{2}A }  \\  \\  =  >   \frac{ \frac{ \frac{1}{ {cos}^{2} A} }{1} }{ {sin}^{2} A}  \\  \\  =  >  \frac{1}{ {cos}^{2} A}  \times  \frac{ {sin}^{2} A}{1}   =  \frac{ {sin}^{2} A}{ {cos}^{2}A }  \\  \\  =  >  {tan}^{2} A \:  \:  \:  \: [R.H.S]

CASE 2:

Take L.H.S

( \frac{1 + tan \: A}{1 - cot \: A} ) {}^{2}  \\  \\  =  > (  \frac{1 +  \frac{sin \: A}{cos \: A} }{1 -  \frac{cos \: A}{sin \: A} } ) {}^{2}  \\  \\  =  >  (\frac{ \frac{ \frac{cos \: A +sin \: A}{cos \: A} }{sin \: A - cos \: A} }{sin \: A} ) {}^{2}  \\  \\  =  > ( \frac{ \frac{ \frac{  (sin \: A +cos \: A)}{cos \: A} }{-sin \: A - cos \: A} }{sin \: A} ) {}^{2}  \\  \\  =  > ( \frac{ (sin \: a + cos \: A)}{-sin \: A - cos \: A}  \times  \frac{sin \: A}{cos \: A} ) {}^{2}  \\  \\  =  > (-  \frac{sin \: A}{cos \: A} ) {}^{2}  \\  \\  =  >  \frac{ {sin}^{2} A}{ { cos}^{2} A}  =  {tan}^{2} A \:  \:  \:  \:  \: [R.H.S]

Hence proved.

Hope it helps ☺️

Answered by N3KKI
0

 <font color ="orange ">

<marquee scrollamount=1000>nekki </marquee>

 <font color ="red ">

<marquee scrollamount=1000>nekki </marquee>

 <font color ="green ">

<marquee scrollamount=1000>nekki </marquee>

 <font color ="blue ">

<marquee scrollamount=1000>nekki </marquee>

 <font color ="purple ">

<marquee scrollamount=1000>nekki </marquee>

Similar questions